وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک کتاب،مقالات،نرم افزار،آموزش نرم افزار،حلال،جزوات،فیلم،کاتالوگ،پروژه،مجلات،سایت،اخبار،استاندارد،هندبوک، مهندسی مکانیک ،مهندسی مکانیک،کارشناسی ارشد مهندسی مکانیک،دکترا مهندسی مکانیک،مهندسی مکانیک، تلگرام ، تلگرام
وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک کتاب،مقالات،نرم افزار،آموزش نرم افزار،حلال،جزوات،فیلم،کاتالوگ،پروژه،مجلات،سایت،اخبار،استاندارد،هندبوک، مهندسی مکانیک ،مهندسی مکانیک،کارشناسی ارشد مهندسی مکانیک،دکترا مهندسی مکانیک،مهندسی مکانیک، تلگرام ، تلگرام

Modeling&Meshing

 

 

انسیس یکی از نرم افزار های تحلیل مسائل مکانیک به روش امان محدود می باشد.
ازانجا که ansys یک نرم افزار تخصصی است آموزش های کمی به زبان فارسی دارد ازاین رو بر آن شدیم تا آموزش های تصویری به زبان فارسی قرار دهیم .
قسمت اول : " مدلینگ و مشینگ"
پسورد : www.menoblog.blogfa.com

دانلود کنید :

جزوه ی مکانیک سیالات دکتر سلطان پور از دانشگاه خواجه نصیر

 

 

جزوه ی مکانیک سیالات دکتر سلطان پور از دانشگاه خواجه نصیر
در 9 فصل :

دانلود فصل 1 تا 3 مکانیک سیالات

http://www.4shared.com/file/126325058/5a4d2b9f/SAYALAT_NASIR-P1____WWWICIVILIR__.html

دانلود
فصل 4تا 6 مکانیک سیالات

http://www.4shared.com/file/126325413/aefa9fcf/SAYALAT_NASIR-P2____WWWICIVILI.html?cau2=403tNull

دانلود
فصل7 تا 9مکانیک سیالات

http://www.4shared.com/file/126325288/ec6781bc/SAYALAT_NASIR-P3____WWWICIVILIR__.html

علل خرابی یاتاقان

 thrust bearings

 

عمریک یاتاقان غلتشی به کل تعداد سیکل های تنش و بار هایی که به اجزای غلتشی وغلتک های یاتاقان وارد می شود بستگی دارد.روش استاندارد شده محاسبه تنش های دینامیکی یاتافان بر پایه ویژگی خستگی مواد تشکیل دهنده یاتاقان که با عث خرابی در یاتا قان میشود،می باشد. خستگی معمولی با پوست پوست شدن وورق ورق شدن در سطح یاتاقان آشکار خواهدشد.

علل خرابی یاتاقان
1-خرابی ناشی از جازدن :خرابی محلی در شیار های یاتاقان ناشی از عیب جازدن یاتاقان می باشد.این خرابی برای نمونه زمانی رخ می دهد که رینگ داخلی یاتاقان غلتشی استوانه ای به خوبی در رینگ خارجی آن حا زده نشود و یا نیروی جا زدن یاتاقان در وسط اجزای یاتاقان وارد شود.
حوزه بار رینگ یاتاقان، ناشی از بارهای خارجی اعمال شده وشرایط گردش یاتاقان است که این حوزه با کدر شدن شیار های یا تا قان مشخض میشود.
شیار های غیر عادی روی یا تاقان،ناشی ازپیشبار مخربی است که از جا زدن خیلی محکم یا تاقان ویا تنظیم غیر دقیق یا تاقان روی محور ،می باشد.
2-آلودگی:ذرات خارجی که روی سطح یا تاقان قرار می گیرند موجب خستگی زودرس در یاتاقان می شوند.ذرات خارجی که دارای خاصیت سایندگی هستند خرابی یاتاقان را تسریع می بخشند وباعث خشن شدن سطوح و کند شدن یاتاقان می شوند.سایش زیاد موجب لقی بیش از اندازه در یاتاقان می شود.

آلودگی ها:
1-قطعات آلوده
2-گرد وخاک
3-درز گیری نا کافی
4-روانساز های آلوده
5-خرده فلز های قطعات دیگر که همراه روانساز ها به یاتاقان منتقل میشود.

3-خوردگی:خوردگی در یاتاقان های غلتشی ممکن است به شکل های مختلف وبه دلایل گوناگون رخ دهد. خراب ناشی از خوردگی با سر وصدایاتاقان هنگام کارکردن آشکار می شود.زنگ زدگی حاصل از خوردگی توسط اجزای یاتاقان ساییده می شوند وباعث سایش سطح یاتاقان می شود.

عوامل خوردگی:
1-آببندی نا کافی در برابر رطوبت و بخا ر آب
2- روانساز هایی که حاوی اسید می باشند
3-محیط نامناسب انبار نگهداری یاتاقان ها :سایش ساچمه ها با شیار یاتاقان با خراش هایی در سطح غلتک یا تا قان ظا هر می شود. این خراش ها در مقایسه با دندانه شدن اجزای یاتاقان در اثر نصب نا مناسب دارای لبه های برآمده نیستند.
سایش میان ساچمه هاو شیار یاتاقان در اثر ارتعاشات در سطح هایی از یا تاقان که ساکن هستند باعث ساییدگی شدید می شوند.چنین خرابی در ماشین هایی که در حال سکون در معرض ارتعاشات هستند به وجو د خواهدآمد که راه بر طرف کردن آن ایجاد لبه های مناسب در یاتاقان ویااستفاده از ابزار مناسبی برای محافظت یا تاقان در هنگام دوران می باشد.
خوردگی که سطح یاتاقان را از میان می برددر سطوحی رخ می دهد که انطباق آن ها با سایر اجزاء به صورت آزاد می باشد.حرکت های ریزی که در چنین سطوحی رخ می دهد با عث سایش زیادی می شود که حرکت یا تا قان را کند کرده وبه سطح محور آسیب می رساند. را ه حل بر طرف کردن این مشکل استفاده از انطباق محکم میان این سطوح می باشد.

4- عبور جریان الکتریسیته :عبور مداوم جریان الکتریسیته از یاتاقان باعث ایجاد خراش های قهوه ای رنگ موازی با محور در تمام محیط غلتک و سایر اجزای غلتشی یاتاقان می شود.
5-روانسازی ناقص :روانسازی ناقص در اثر تامین نا کافی روانساز ویا استفاده از روانسازهای نا مرغوب ایجاد می شود.
اگر لایه روغن کافی میان سطوح تامین نشودکه حرکت لغزشی وسایش به وجود خواهد آمدکه علت تشکیل حفره های ریز و پوست پوست شدن سطح در غلتک های یاتا قان می باشد در مواردی که عمل روانسازی بیش از اندازه انجام می شود ،روانساز به دلیل حرکات شدید یاتاقان گرم شده وخاصیت خودرا از دست می دهند وبا عث خرابی شدید در یا تاقان می شوند .از نگهداشتن روانساز ها در یاتاقان به خصوص در سر عت های بالا بپر هیزید.

 

یاتاقان

 
 
یاتاقان وسیله‌ای است که اجازه حرکت نسبی مقید را بین دو یا بیشتر از دو قطعه را می‌دهد که به طور نمونه به صورت چرخش یا حرکت خطی است. یاتاقان‌ها می‌توانند به صورت گسترده‌ای بر طبق حرکتی که مجازند داشته باشند و یا براساس اصول کاریشان و همچنین جهت بارهای اعمالی که می‌توانند تحمل کنند، طبقه بندی شوند.


چگونگی کاهش اصطکاک

یاتاقان‌های ساده به طرز گسترده‌ای استفاده می‌شوند و از سطوح برای تماس سایشی استفاده می‌کنند. علی الخصوص با وجود روانکاری، آنها معمولاً عمر و اصطکاک کاملا قابل قبولی می‌دهند. از سوی دیگر، یاتاقانهای با اصطکاک کم معمولاً به خاطر راندمانشان، کاهش فرسایش و استفاده گسترده درسرعت‌های بالا را تسهیل می‌کنند، دارای اهمیتند. اصولا یک یاتاقان می‌تواند اصطکاک را با امتیاز شکلش، با موادش و یا با معرفی و داشتن یک سیال بین سطوح و یا جداکردن سطوح با یک میدان الکترومغناطیسی، کاهش دهد.

با کمک شکل: معمولاً مزایایش را با استفاده از غلطک‌ها و یا کره‌ها و یا با شکل دادن یاتاقان‌های خمشی حاصل می‌کند.
با کمک مواد: با بهره گیری از طبیعت موادی که یاتاقان‌ها را تشکیل می‌دهند. (یک مثال می‌تواند استفاده از پلاستیک باشد که اصطکاک سطحی کمی دارد.)
به کمک یک سیال: با بهره بردن از ویسکوزیته کم یک لایه سیال مانند یک روانساز و یا یک واسطه فشرده شده که از برخورد دو سطح جلوگیری کند؛ یا با کاهش نیروی عمودی بین آنها.
به کمک میدان‌ها: با استفاده از میدان‌های الکترومغناطیسی، مانند میدان مغناطیسی، تا از برخورد سطوح جامد جلوگیری کند.

حتی می‌توان از ترکیبی از اینها در یک یاتاقان بهره برد. مثال این قسمت برای زمانی است که یک اتاقک از پلاستیک ساخته شده باشد و بین توپها/غلطک‌ها که با شکلشان اصطکاک را کم می‌کنند، فاصله ایجاد کند و تکمیلشان کند.


اصول عملکرد

حداقل شش اصل کاری معمول وجود دارد.

یاتاقان‌های لغزشی که معمولاً بوش، یاتاقان‌های سرمحور، یاتاقان بوش، یاتاقان‌های خان دار، یا یاتاقان‌های ساده نامیده می‌شوند.
یاتاقان‌های غلطشی مانند یاتاقان‌های ساچمه‌ای (بلبرینگ‌ها) و یاتاقان‌های غلطکی (رولربرینگ‌ها).
یاتاقان‌های مرصع که نیروها در آن بوسیله پیچیدن جزئی خارج از مرکز محور، تحمل می‌شود.
یاتاقان‌های لغزشی که در آن نیروها توسط یک سیال و یا گاز تحمل می‌شوند.
یاتاقان‌های مغناطیسی که در آن نیرو با کمک یک میدان مغناطیسی تحمل می‌شود.
یاتاقان‌های خمشی که در آن حرکت با المان نیروئی که خم می‌شود، تأمین می‌شود.  


نمونه‌ای از یاتاقان ساچمه‌ای



انیمیشنی از یاتاقان ساچمه‌ای 
حرکت‌ها

حرکت‌های معمولی که یاتاقان‌ها اجازه آن را می‌دهند عبارتند از:

• چرخش شعاعی به عنوان مثال چرخش میله محور.

• حرکت خطی مانند کشو.

• حرکت کروی مانند لولای کاسه ساچمه‌ای

• حرکت مفصلی مانند درها

نیروها

یاتاقان‌ها تنوع گسترده‌ای در اندازه و جهتی که می‌توانند تحمل کنند دارند. نیروها می‌توانند به صورت نیروی غالب شعاعی، محوری (یاتاقان کف گرد) یا ممان عمود بر محور اصلی باشند.

سرعت‌ها

انواع مختلف یاتاقان‌ها، محدودیت‌های سرعت عملکردی متفاوتی دارند. سرعت به طور نمونه به عنوان حداکثر سرعت سطحی نسبی تعریف می‌شود که واحدش اغلب ft/s یا m/sمی باشد. یاتاقان‌های چرخشی به عنوان نمونه، عملکرد را به صورت DN توصیف می‌کنندکه D قطر (اغلب به mm) یاتاقان و N سرعت چرخش با واحد دور بر دقیقه‌است. عموماً سرعت عملکرد یاتاقان‌ها در بازه قابل توجهی باهم تداخل دارد. به عنوان نمونه یاتاقان‌های ساده در سرعت‌های پائین کارآئی دارند. یاتاقان‌های غلتشی سریعتر هستند؛ به دنبال آن یاتاقان‌های لغزشی و سرانجام یاتاقان‌های مغناطیسی قرار دارند که نهایتاً توسط نیروی مرکزگرا و با غلبه بر مقاومت مواد، محدود می‌شوند.

لقی و الاستیسیته

بعضی کاربردها نیروهای یاتاقان‌ها را در جهات متنوعی به کار می‌برد و تنها لقی یا شیب محدودی را به عنوان نیروی متغیر اعمالی می‌پذیرد. یکی از منابع حرکت در یاتاقان‌ها، فواصل یا لقی هاست. برای مثال یک شفت ۱۰میلیمتری در یک سوراخ ۱۲ میلیمتری، ۲ میلیمتری لقی دارد. منبع دوم حرکت، الاستیسیته در خود یاتاقان هاست. برای مثال ساچمه‌ها در یاتاقان‌های ساچمه‌ای (بلبرینگ‌ها) مانند یک لاستیک سفت می‌ماند و تحت بار، از دایره به یک شکل جزئی مسطح تبدیل می‌شود. کاسه بلبرینگ نیز الاستیک است و یک فرورفتگی را در محلی که ساچمه‌ها بر روی آن فشار می‌آورند ایجاد می‌کند.

عمر

یاتاقان‌های مغناطیسی و لغزشی می‌توانند به صورت بالقوه عمر نامحدود بدهند. عمر یاتاقان‌های غلتشی آماری است اما بوسیله بار، دما، نگهداری و تعمیر، ارتعاش، روانکاری و سایر فاکتورها تعیین می‌شود. برای یاتاقان‌های ساده بعضی از مواد عمر بیشتری نسبت به بقیه می‌دهند. بعضی از ساعت‌های جان هریسون هنوز هم بعد از صدها سال کار می‌کنند چرا که از چوب درخت مقدش خشب الانبیا در ساختشان استفاده شده‌است. درحالیکه ساعتهای فلزی اش با توجه به فرسودگی بالقوه شان به ندرت کار کردند.

تعمیر و نگهداری

یاتاقان‌های بسیاری احتیاج به تعمیرات دوره‌ای دارند تا از خرابی پیش از موعد جلوگیری شود. گرچه بعضی از آنها نظیر یاتاقان‌های لغزشی یا مغناطیسی ممکن است احتیاج به نگهداری کمتری داشته باشند. بیشتر یاتاقان‌ها در عملکرد در دورهای بالا نیازمند روانکاری و تمیزکاری دوره‌ای هستند و ممکن است احتیاج به تنظیمات مجدد داشته باشند تا اثر فرسایش را به حداقل برسانند.

میل لنگ و فلایویل

میل لنگ یک قطعه ریختگی یکپارچه از آلیاژ فولاد می‌باشد که با عملیات حرارتی و چکش‌کاری تهیه می‌شود و دارای استحکام مکانیکی قابل توجهی است، میل لنگ باید به اندازه کافی محکم باشد تا بتواند ضربه‌هائی را که در زمان احتراق به پیستون وارد می‌شود بدون پیچش زیاد تحمل نماید. علاوه بر این میل لنگ باید با نهایت دقت متعادل گردد تا از ارتعاشات آن که در اثر وزن خارج از مرگز لنگ به وجود می‌آید جلوگیری به عمل آید. برای متعادل ساختن میل لنگ، در مقابل هر لنگ وزنه‌هائی به میل لنگ اضافه شده است.

قدرتی که از طرف پیستون‌ها به میل لنگ داده می‌شود یکنواخت نیست. موقعی که زمان های قدرت با هم اشتراک پیدا می‌کنند (در موتورهای شش سیلندر و هشت سیلندر) لحظه‌ای وجود دارد که در آن مقدار قدرت از زمان‌های دیگر بیشتر است، این عمل موجب می‌شود که سرعت میل لنگ کم یا زیاد شود. البته چرخ لنگر بر این تمایل غلبه می‌کند. فلایول یک فلکه نسبتاً سنگین می‌باشد که به اتنهای عقب میل لنگ با پیچ و مهره بسته می‌شود، اینرسی چرخ لنگر تمایل دارد که آن را با سرعت ثابت حرکت دهد بنابراین چرخ لنگر در موقعی که میل لنگ تمایل به افزایش سرعت داشته باشد قدرت را می‌گیرد و هنگامی که تمایل به کاهش سرعت داشته باشد قدرت را به آن پس می‌دهد .

 

میل لنگ و فلاویل

                                  

علاوه بر این عمل، چرخ لنگر در محیط‌ خارجی خود دندانه‌هائی دارد که در موضع روشن کردن موتور با دنده محرک دستگاه استارت درگیر می‌شود. ضمناً دستگاه کلاچ به قسمت جلوی میل لنگ سه قطعه مختلف سوار می‌شود که عبارتند از یک چرخ دنده یا چرخ زنجیر که میل بادامک را به حرکت در میآورد، یک نوسان گیر و یک پولی پروانه، پولی، توسط یک تسمه پروانه، پروانه، پمپ آب و ژنراتور را می‌چرخاند.

چرخ لنگر

در موتورهای چند سیلندر زمان‌های قدرت پشت سر هم به وجود می‌آید و یا این که مقداری با هم اشتراک دارند یعنی هنوز یک زمان قدرت به پایان نرسیده قدرت دیگر تولید می‌شود و به این ترتیب قدرت به طور یکنواخت تولید می‌گردد. با این حال جریان قدرت به اندازه مطلوب یکنواخت نیست. اگر قدرت موتور باز هم یکنواخت‌تر گردد موتور آرام‌تر کار خواهد کرد. برای رسیدن به این هدف از چرخ لنگر (فلایول) استفاده می‌شود، چرخ لنگر یک فلکه نسبتاً سنگین می‌باشد که به عقب میل لنگ موتور متصل شده است.

برای این که بهتر به کار چرخ لنگر پی ببریم یک موتور تک سیلندر را در نظر می‌گیریم. این موتور در هر چهار زمان یک زمان قدرت دارد. در ضمن زمان‌های سه گانه دیگر یعنی در زمان تنفس که خطوط هوا و بنزین وارد سیلندر می‌شود، و در زمان تراکم که مخلوط در داخل سیلندر می‌گردد، و همچنین در زمان تخلیه که گازهای سوخته از سیلندر به خارج رانده می‌شود، موتور مقداری انرژی مصرف می‌کند. بنابراین در زمان قدرت، موتور سرعت می‌گیرد و در زمان‌های دیگر سرعت خود را از دست می‌دهد. هر چرخ یا فلکه‌ای که حرکت دورانی داشته باشد از آن جمله فلایول همیشه مایل است حالت حرکت خود را حفظ کند و یا به عبارت دیگر در مقابل تغییر سرعت از خود مقاومت نشان می‌دهد (این تمای به علت اینرسی ماده می‌باشد). هنگامی که موتور به افزایش سرعت میل داشته باشد، چرخ لنگر در مقابل آن مقاومت می‌کند، موقعی که موتور به کاهش سرعت میل داشته باشد باز چرخ لنگر در مقابل آن مقاومت می‌کند.

با وجود این در موتورهای تک سیلندر مقداری افزایش و کاهش سرعت وجود دارد ولی فلایول این تغییرات سرعت را به حداقل ممکن می‌رساند. در حقیقت چرخ لنگر مقداری از انرژی موتور را در زمان قدرت و افزایش سرعت در خود ذخیره می‌کند و بعد در زمان هائی که موتور قدرت تولید نمی‌کند آن را به موتور پس می‌دهد. در موتورهای چند سیلندر نیز چرخ لنگر به همین روش کار می‌کند و ماگزیمم سرعت را به هم نزدیک می‌کند و سرعت را یکنواخت می‌نماید. علاوه بر این فلایول محلی برای نگهداری قطعات کلاچ فراهم می‌سازد. ضمناً روی فلایول دنده‌ای وجود دارد که در موقع استارت زدن یا روشن کردن موتور با دنده محرک استارت درگیر می‌شود.

ارتعاش گیر یا ضربه‌گیر میل لنگ

میل لنگ در معرض نیروهای مختلف و متناوب قرار دارد و در آن ارتعاشات پیچشی به وجود می‌آید. ارتعاشات متناوب، باعث تاب برداشتن میل لنگ می‌شود. پیچش ناموزون در جلوی میل لنگ، در سرعت معینی اتفاق می‌افتد. مثلاً ممکن است در دورهای1200، 1600 یا 2400 دور در دقیقه به حداکثر برسد. شدت ارتعاشات در دورهای بین 1200 تا 1600 دور در دقیقه است و نیز در فاصله بین 1600 تا 2400 ارتعاشات میل لنگ تشدید می‌گردد.

ارتعاشات میل لنگ را به وسیله ارتعاش گیر کاهش می‌دهند. ارتعاش‌گیر، از یک فلایول کوچک که در جلوی میل لنگ به وسیله بوش‌های لاستیکی و صفحه اصطکاکی به پولی یا چرخ دنده اتصال دارد، تشکیل شده است و همراه آن می‌گردد.

فلایو‌گیر، مانند فلایول انتهای میل لنگ در موقع ازدیاد ناگهانی سرعت، مقداری از انرژی را جذب نموده، در موقع کاهش دور، انرژی خود را به میل لنگ تحویل می‌دهد. در جلوی میل لنگ عواملی مانند دینام، واتر پمپ پروانه و غیر قرار دارد که همواره به نگه داشتن جلوی میل لنگ تمایل دارند. بنابراین برای حذف تأثیرات عوامل کاهنده سرعت، ارتعاش‌گیر کمک چشم‌گیری در کار میل لنگ می‌کند.

ارتعاش‌گیر وزنه‌ای

به پولی میل لنگ متصل می‌باشند. در شکل سمت چپ، بوش لاستیکی بزرگی در چند موضع روی فلایول بسته می‌شود که از وسط لاستیک آن پیچ‌های اتصال دهنده عبور کرده، فلایول ارتعاش‌گیر را به پولی متصل می‌سازد. در شکل وسط، فلایول یک دیسک فولادی بزرگی است که به وسیله لاستیک‌های وسط از میل لنگ نیرو گرفته یا به آن نیرو وارد می‌کند.

فلایویل
در شکل فلایول به وسیله یک فلانچ لاستیکی و یک درپوش به سر میل لنگ بسته می‌شود. فلانچ لاستیکی مانند بوش‌های لاستیکی در دو نوع دیگر عمل می‌کند.

ارتعاش‌گیر هیدرولیکی

این ارتعاش‌ براساس اینرسی فلایولی که در محفظه‌ی روغن شناور است، کار می‌کند. پوسته یا محفظه‌ی روغن به دنده سر میل لنگ بسته شده، همراه آن گردش می‌کند. فلایول داخل روغن بر اثر نیروی اصطکاک روغن، دیرتر از میل لنگ، انرژی اخذ می‌کند. همچنین دیرتر از حرکت باز می‌ایستد و لذا ارتعاش‌ میل لنگ را خنثی می‌کند. شکل (15ـ6)

 

ارتعاش گیر

حل کلی استوانه های جدار ضخیم متقارن محوری

حل کلی استوانه های جدار ضخیم متقارن محوری ساخته شده از مواد ناهمگن FG با استفاده از نظریه الاستیسیته مستوی
در این مقاله با استفاده از الاستیسیته مستوی (PET)، معادله حاکم بر استوانه های جدار ضخیم متقارن محوری ساخته شده از مواد ناهمگن FG در حالت کلی استخراج شده و سپس تنش های شعاعی و محیطی و نیز جابه جایی شعاعی استوان های به ازای ریشه های حقیقی، ریشه های مضاعف و ریشه های مختلط معادله مشخصه با درنظر گرفتن شرایط انتهایی متفاوت استوانه: دو سر باز، دو سر بسته و مقید و دو سر بسته و نامقید، به صورت تحلیلی (حل دقیق) به دست آمده است. تنش ها و جابه جایی با تغییرات ضرایب ناهمگنی مطالعه و با حالت استوانه جدار ضخیم همگن مقایسه شده است. در این مقاله، روابط تحلیلی در وضعیت های متفاوت، به دست آمده و سپس با تنها وضعیت تحلیل شده توسط یکی از پژوهشگران مقایسه و اشتباه مقاله ایشان تصحیح و تکمیل شده است. جنس استوانه، ماده ناهمگن و همسانگرد با تغییرات مدول الاستیسیته در راستای شعاعی به صورت توانی و با نسبت پواسون ثابت است.

دانلود

تاریخچه و تکامل یاتاقان ها

تاریخچه و تکامل یاتاقان ها

یک نوع متقدم از یاتاقان‌های خطی از سه بدنه استفاده می‌کند که بر روی هم و در زیر قلم بند قرار دارند. گرچه هیچ مدرک قاطعی وجود ندارد اما این تکنولوژی ممکن است به قدمت ساخت اهرام گیزا باشد. یاتاقان‌های خطی مدرن از اصول مشابهی استفاده می‌کنند با این تفاوت که بعضی مواقع از ساچمه به جای غلتک استفاده می‌شود.

اجزاء نخستین ساچمه‌های ساده و غلتکی، چوب بوده‌است اما سرامیک، یاقوت کبود و شیشه نیز کاربرد داشتند. آهن، برنز و فولادهای دیگر، سرامیک‌ها و پلاستیک (برای مثال نایلون، پولی اکسی متیلین، تفلون و UHMWPE) همگی امروز معمولند. یک ساعت جیبی مرصع برای کاهش اصکاک از سنگ‌ها استفاده می‌کند و با این کار اجازه می‌دهد که زمان دقیق تر نگه داشته شود. حتی مواد قدیمی هم می‌توانند دوام خوبی داشته باشند. برای مثال، یاتاقان‌های چوبی امروزه هنوز هم می‌توانند در آسیاب‌های آبی قدیمی دیده بشوند که آب، سرما و روانکاری اش را تأمین می‌کند.

یاتاقان‌های چرخشی برای برای بسیاری از کاربردها مورد نیازند؛ از کاربردهای سنگین در محور چرخها و شفت‌های ماشین گرفته تا قسمت‌های دقیق ساعت‌ها. ساده‌ترین یاتاقان چرخشی یاتاقان بوش است که فقط یک سیلندر است که بین چرخ و محورش وارد می‌شود؛ این ساختار بوسیله یاتاقان غلتشی ادامه پیدا کرد که در آن بوش بوسیله تعدادی غلتک سیلندری جایگزین شد. هر غلتک به عنوان یک چرخ جدا رفتار می‌کند. اولین یاتاقان غلتکی اتاق دار عملی در اواسط دهه ۱۷۴۰ میلادی بوسیله جان هریسون که ساعت ساز بود برای یک کارمند وقت نگهدار دریائی ابداع شد.. این وسیله از یاتاقان برای یک حرکت نوسانی بسیار محدود استفاده کرد ولی او همچنین در همان زمان از یک یاتاقان مشابه در یک وسیله واقعا دوار در یک ساعت معمولی نیز استفاده کرد.

یک مثال قدیمی از بلبرینگ چوبی که یک میز چرخنده را پشتیبانی می‌کرد، از کشتی رومی نمی‌در دریاچه نمی‌به جا مانده‌است. خرابی کشتی به ۴۰ قبل از میلاد برمی گردد. گفته می‌شود لئوناردو داوینچی یک نوع یاتاقان ساچمه‌ای (بلبرینگ) را در حدود سال ۱۵۰۰ شرح داده‌است. مسئله‌ای در ارتباط با بلبرینگ‌ها، مالش ساچمه‌ها در مقابل یک دیگر است که موجب اصکاک مضاعف می‌شود. اما مالش می‌تواند بوسیله محبوس کردن ساچمه‌ها درون یک قفس جلوگیری شود. یاتاقان غلتشی اتاق دار در اصل بوسیله گالیله در دهه ۱۹۶۰ شرح داده شد. قرار دادن یاتاقان‌ها در یک ردیف تا سال‌ها زیادی بعد از آن انجام نشد. اولین امتیاز حق ثبت کاسه ساچمه متعلق به فیلیپ وگان از کارمارتن در ۱۷۹۴ بود.

ایده فردریش فیشر در سال ۱۸۸۳ برای فرزکاری و سنگ زدن ساچمه‌ها در اندازه‌ها و گردی یکسان به کمک وسیله‌ای با ماشین تولید مناسب، اساس خلق یک صنعت مستقل بلبرینگ سازی را ایجاد داد.

یک حق امتیازی که به عنوان اولین حق امتیاز گزارش شده‌است، به یک تعمیرکار دوچرخه پاریسی در آگوست ۱۸۶۹رسید. این یاتاقان‌ها سپس در دوچرخه‌ای که بوسیله جیمز مور در اولین دوره مسابقات جهانی دوچرخه سواری در جاده پاریس- روئن در نوامبر ۱۸۶۹به مقام قهرمانی رسید، گنجانده شد.

طراحی مدرن یاتاقان خود تنظیم به اسون وینگوئیست از شرکت تولید کننده بلبرینگ skf در سال ۱۹۰۷ مربوط می‌شد. هنری تیمکن، یک رویاگرا و مبتکر در صنعت حمل و نقل در قرن ۱۹، امتیاز یاتاقان با غلتک مخروطی را در ۱۸۹۸به ثبت رساند. سال بعدش، او یک شرکت تأسیس کرد تا ابداعش را به تولید برساند. در طول یک سده، شرکت آنقدر رشد کرد که یاتاقان‌ها را از همه نوعی درست می‌کرد؛ به خصوص فولاد و ارائه محصولات و خدمات مربوطه اش.

اریش فرانکه در سال ۱۹۳۴ بلبرینگ کاسه سیمی را اختراع و به ثبت رساند. توجه او در طراحی یاتاقان بر کوچک بودن سطح مقطع تا حداقل مقدار ممکن بود که بتواند در یک طراحی بسته جمع بشود. بعد از جنگ جهانی دوم او به همراه گرهارد هیدریچ، شرکت «فرانک و گرهارد» را تأسیس کرد تا به تولید و بسط بلبرینگ کاسه سیمی سرعت ببخشد.

شرکت تیمکن، شرکت SKF، گروه شافلر (خصوصی)، شرکت NSK، و شرکت یاتاقان سازی NTN در حال حاضر بزرگ‌ترین تولیدکنندگان یاتاقان در جهانند.

امروزه، یاتاقان‌ها در کاربردهای متنوعی به کار می‌روند. یاتاقان‌های فوق سریع در قطعات دستی دندانپزشکی به کار می‌رود، یاتاقان‌های هوافضائی در مریخ نورد به کار رفته‌اند، و یاتاقان‌های خمشی در سیستم‌های همتراز نوری استفاده شده‌اند.

دانلود جزوه اموزشی محیط سیمولینک متلب

  

دانلود جزوه اموزشی محیط سیمولینک متلب

برای دانلود جزوه اموزشی محیط سیمولینک متلب به لینک زیر مراجعه فرمایید

دانلود

پسورد : powerplant

دانلوداسلایدی اموزشی برای مبحث انتقال حرارت

سلام
اسلایدی اموزشی برای مبحث انتقال حرارت


امیدوارم به دردتون بخوره

دانلود

تغییر شکل فلزات

 

 

فلز ماده‌ای است که می‌توان آن را صیقل داده و براق کرد، یا به طرح‌های گوناگون در آورد و از آن مفتول‌های سیمی ظریف تهیه کرد. فلز جسمی است که آزمایش‌های مربوط به گرما و مهم‌تر از همه جریان الکتریکی را به خوبی هدایت می‌کند. فلزات با یکدیگر فرق زیادی دارند، از جمله در رنگ و سختی و نرمی، تعدادی از آنها ممکن است به آسانی خم شده و یا خیلی محکم و مقاوم باشند

شکل واقعی فلزات
شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها، یون‌ها کاملاً پهلوی هم قرار دارند، و معمولاً تراکم در فلزات زیادتر از دیگر مواد است. اختلافات عمده فلزات و دیگر جامدات و مایعات.فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته هستند. به این سبب فلزات از دیگر گروه‌های عناصر، کاملاً متفاوت دارد.
اختلاف عمده فلزات و دیگر جامدات و مایعات، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند «رسانش گرمایی فلزات).

مقاومت مکانیکی فلز
مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده، نشکند. بسیاری از فلزات، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.

علت درخشش فلزات
دلیل اول آن است که با طرح ریزی و براق کردن صحیح می‌توان فلزات را به شکل خیلی صاف تهیه کرد. گر چه آنها نیز تصاویر را خوب منعکس می‌کنند، ولی ظاهر سفید و درخشان بیشتر قطعات فلزی صیقلی شده را ندارند. بطور کلی جلا و درخشندگی فلز بستگی دارد به گروه الکترون‌های آن دارد.الکترون‌ها می‌توانند هر نوع انرژی را که به روی فلزات می‌افتد جذب کنند؛ زیرا در حرکت آزاد هستند. بیشتر انرژی الکترون‌ها از تابش نوری است که به آنها می‌افتد، خواه نور آفتاب باشد یا نور برق. اکثر فلزات همه انرژی جذب شده را پس می‌دهند، به همین دلیل، نه تنها درخشان بلکه سفید به نظر می‌آیند.

علت تغییر شکل فلزات
بسیاری از فلزات در حرارت ویژه‌ای، آرایش یون‌های خود را تغییر می‌دهند. با تغییر ترتیب آرایش یون‌های بسیاری از خصوصیات دیگر فلز نیز دگرگون می‌شود و ممکن است فلز کم و بیش شکننده، قردار، بادوام و قابل انحنا شود یا اینکه انجام کار با آن آسان گردد. بسیاری از فلزات در هنگام سرد بودن، به سختی تغییر شکل می‌پذیرند. بیشتر فلزات جامد را به زحمت می‌توان در اثر کوبیدن به صورت ورقه و مفتو‌ل‌های سیم در آورده، ولی اگر فلز گرم شود، انجام هر دو آسان است.

بسیاری از قطعات آلومینیمی به همان روش و با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است آولومینم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند.

آلومینم دارای فنریت زیادی است وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد.اغلب عملیات شکل دادن آلومینیم در حالت سرد انجام می گیرد زیرا وقتی پوفیلی با رویه نازک و روق های نازک حرادت داده می شوند امکان تاب خوردن آنها وجود دارد نیروی لازم برای تغییر شکل آلومینیم کمتر از فولاد است نرمی آلومینیم به خود ماده ( نوع آلیاژ ) و حالت آن بستگی دارد وضعیت آلومینیم مانند هر فلز دیگری در اثر کار سرد تغییر می کند تاثیر کار سرد بر آلومینم از این قرار است ماده مستحکم تر و سخت تر می شود در قطعه تنش تولید می شود اگر تغییر شکل از ظرفیت تغییر شکل پذیری فلز بیشتر شود کار سرد مممکن است باعث ترک خوردن آن شود راحت ترین ماده آلومینیمی از نظر تغییر شکل و نرمی آلویمینم حالص آلومینیم تصفیه شده و آلیاژ Al-Mn در حالت نرم است.

آلومینیم خالص و آلیاژهای آلومینیم در حالت نیمه سخت و آلیاژهای پیر سختی پذیر در حالت نرم در حال کار پذیر هستند گر چه کارپذیری آن ها کمتر از موادبیشتر شاد شده است آلیاژ های آلومینیم در حالت سخت یا حالات کاملا پیر سهت شده به مقدار کمی کار پذیرند و به طور کلی کارپذیری آنها بسیار مشکل است.آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود.

آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند. آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند .

آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند استکام بالای آلیاژهای Al-Li ناشی از قابلیت آن ها برای پیر سختی است مهمترین زمینه های کاربرد آلومینم در صنایع عبارتند از :1- مصارف خانگی نظیر ظروف 2- مصارف ساختمانی نظیر در و پنجره 3- مصارف تاسیساتی نظیر لوله و اتصالات 4- مصارف صنایع فضایی5- مصارف اتومبیل سازی 6- مصارف کشتی سازی بدنه پروانه پمپ 7- مصارف تجاری و بسته بندی چای مواد لبنی ضخامت تا 10 میکرون 8- مصارف الکتریکی : نظیر کابل ها .
بسیاری از قطعات آلومینیمی به همان روشو با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است.
آلومینیوم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند آلومینم دارای فنریت زیادی است.

وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد .

انواع تغییر شکل:

بررسی مکانیزمهای ایجاد ترک و مکانیزمهای متفاوت رشد سریع یا در حد بحرانی ترک و رشد آرام و پایینتر از رشد بحرانی از اهمیت ویژه صنعتی برخوردارند. بررسی فعل و انفعالات فیزیکی که به هنگام شکست روی میدهد چندان ساده نیست، زیرا چگونگی ایجاد ترک و رشد آن و بالاخره نوع شکست در مواد کریستالی به جنس، ساختار شبکه کریستالی، ریزساختار و از آنجا که قطعات معمولا به طور کامل سالم و بدون عیب نیستند به نوع، اندازه و موقعیت عیب، نوع و حالت تنش وارد بر آنها بستگی خواهد داشت. معمولا شکست درفلزات به شکست نرم و شکست ترد تقسیم می شود.در صنعت هدف، کنترل و به تعویق انداختن شکست است.

شکست نرم:
بسیاری از فلزات و آلیاژهای آنها، به ویژه آنهایی که دارای شبکه fcc هستند، مانند آلومینیوم و آلیاژهای آن، در تمام درجه حرارتها، شکست نرم خواهند داشت. شکست نرم به آرامی و پس از تغییر شکل پلاستیکی زیاد به ازای تنشی بالاتر از استحکام کششی ظاهر میشود. از مشخصات شکست نرم، تحت تاثیر تنش کششی، ظاهر گشتن گلویی یا نازکی موضعی و ایجاد حفره های بسیار ریز در درون قسمت گلویی و اتصال آنها به یکدیگر تا رسیدن به حد یک ترک ریز و رشد آرام ترک تا حد پارگی یا شکست نهایی است

مراحل مختلف شکست نرم در یک فلز انعطاف پذیر

در این نوع شکست علت ایجاد حفرهای ریز در محدوده گلویی میتواند تغییر شکل غیر یکنواخت ناشی از ناخالصیهای موجود در ماده اصلی زمینه باشد. لذا با ایجاد حفره های بسیار ریز در محدوده گلویی حالت تنش سه محوری برقرار میشود که منجر به ایجاد ترک میشود .
در طراحی و ساخت اجزای ماشین آلات و در ساختمان سازی، تنشهای وارد بر سازه های فلزی در محدوده الاستیکی انتخاب میشود. بنابراین در کاربرد صنعتی، شکست در حالت تنش استاتیکی در مواد انعطاف پذیر ( داکتیل ) یک پیشامد نامطلوب است.

ترک داخلی در نا حیه نازک شده در نمونه کششی مس با خلوص بالا

شکست ترد:
شکست ترد معمولا در فلزاتی با ساختار کریستالی مکعب مرکزدار(bcc ) و هگزاگونال متراکم (hcp) و آلیاژهای آنها در درجه حرارتهای پایین ( معمولا پایینتر از دمای معمولی محیط ) و سرعتهای تغییر شکل بالا بطور ناگهانی ظاهر میشود. شکست ترد در امتداد صفحه کریستالی معینی، به نام صفحه کلیواژ، انجام میگیرد. در شکست ترد عموما تغییر شکل پلاستیکی قابل توجهی در منطقه شکست مشاهده نمیشود.نظریه شکست ابتدا علت شکست را این چنین بیان کرد که تمام پیوندهای اتمی در امتداد صفحه شکست هم زمان با هم گسیخته میشوند. بدین ترتیب که با ازدیاد تنش فاصله اتمها از یکدیگر دور میشوند ودر نهایت به محض اینکه تنش به حد تنش شکست ( تنش بحرانی ) رسید، در نتیجه گسستن تمامی پیوندهای اتمی در صفحه عمود بر امتداد کشش، شکست پدیدار میشود.در جدول زیر تنشهای بحرانی عمود بر صفحات کریستالی معین در چند تک کریستال برای شکست داده شده است.

شکست ترد وتعدادی از تک کریستالها

عملا تنش لازم برای شکست مواد لازم فلزی به اندازه قابل توجهی کمتراز تنش شکست محا سبه شده ا ز طریق تئوری است . بنابراین فعل وانفعال شکست نمیتواند از طریق گسستن همزمان تمامی پیوند های اتمی درامتداد سطح شکست صورت گیرد. بد ین ترتیب فعل و انفعالات شکست عملا بیشتر از طریق ایجاد یک ترک بسیار ریز به عنوان منشا ترک و رشد و پیشروی آن انجام میگیرد . برای پیشروی ترک د ر یک ماده لازم است مقدار تنش متمرکز در نوک ترک از استحکام کششی در آن موضع فراتر رود . د ر مواردی که شرایط برای پیشروی منشا ترک مساعد نیست ترک می تواند متوقف گشته وشکست پدیدار نشود.


تئوری گریفیت:
او چنین بیان می کند که در ماده ای که حاوی تعدادی ترک بسیار ریز باطول معینی است ، همین که مقدار تنش متمرکز درنوک ترک ، حداقل به مقدار تنش لازم برای گسستن پیوندهای اتمی د رآن موضع ( استحکام کششی ) رسید، شکست ظاهر میشود . باپیشرفت ترک ، سطح ترک افزایش می یابد . این مطلب بدین معنی است که برای ایجاد این سطح باید انرژی به کار برده شود . این مقدار انرژی از انرژی تغییر شکل کسب می شود.
بنابراین فرضیه گریفیت علت پدیدار گشتن شکست ترد را وجود ترکها و خراشهای سطحی بسیار ریز ( با اندازه بحرانی) و پائین بودن استحکام را د رآن مواضع می داند . اماموادب هم وجود دارد که بد ون داشتن ترکهای سطحی بسیار ریز شکست ترد د ر آنها پدیدار می شود . بنابراین د ر این گونه مواد هم باید فعل وانفعالاتی صورت گیرد که موجب به وجود آمدن تمرکز تنش وفراتر رفتن موضعی مقدارتنش از استحکام کششی ود رنتیجه ایجاد منشا ترک شود. زنر و اشترو مکانیزم این فعل و انفعال راچنین بیان داشتند که در حین تغییر شکل پلا ستیکی نابجاییها در پشت موانع ( مانند مرزدانه ها ومرز مشترک د و قلوییها ) تجمع یافته وبدین ترتیب در زیر نیم صفحه های مربوط به این نابجاییها ترکهای بسیار ریزی ایجاد می شود .
این ترکهای بسیار ریزهمچنین می تواند محلهای مناسبی برای نفوذ عناصری مانند اکسیژن ، ازت وکربن درآنها وایجاد فازهای ثانوی ترد ودر نتیجه شکست ترد باشند. چنین رفتار ترد د ر شکست ترد مس باوجود عناصری مانند آنتیموان وآهن همراه بااکسیژن مشاهده شده است .

مکانیزم ایجاد ترک از طریق نابجاییها

الف) تجمع نابجائیها در پشت مرز دانه ها (Zener)
ب) تلاقی نابجائیها (Cottrell)

کاترل مکانیزم د ومی رابرای ایجاد منشا ترک ارائه کرد. بد ین صورت که منشا ترکهای ریز می تواند د ر اثر تلا قی د و صفحه لغزش بایکد یگر ، د ر نتیجه د ر هم آمیختن نابجاییها د ر محل تلا قی آن د و صفحه و ایجاد نابجاییها ی جد ید ، ناشی شود، این مکانیز م می تواند د لیلی برای ایجاد سطح شکست ( صفحه کلیواژ ) مشاهده شده د ر صفحه (001 ) د ر فلزات باساختار کریستالی مکعب مرکزدار (bcc ) باشد.
درفلزات چندین کریستالی شکست تر د میتواند به صورت برون دانه ای ( بین دانه ای) و یا درون دانه ای باشد.شکست برون دانه ای در بین دانه ها د ر امتداد مرز دانه ها ظاهر می شود. د لیل این نوع شکست بیشتر میتواند وجود ناخالصیها یا جدایش و رسوب عناصر یا فازهای ترد و شکننده د ر امتداد مرز دانه ها باشد. شکست ترد درفلزات بیشتر به صورت درون دانه ای است . بدین ترتیب که ترک د ر داخل دانه ها گسترش می یابد. د رجه حرارت و سرعت تغییر شکل تاثیر مخالفی برروی نوع شکست خواهد داشت ، به طوری که باکاهش درجه حرارت و ازد یاد سرعت تغییر شکل ، تمایل برای شکست ترد به صورت درون دانه ای د ر حین خزش د ر نتیجه تغییرات شیمیائی دراثر اکسیداسیون ممکن خواهد بود. چنانچه اکسیداسیون برون دانه ای در فلزات صورت گیرد، تنش شکست بسیار کاهش می یابد.

تافنس شکست:
چنانچه در جسمی ترک وجود داشته باشد، د راین صورت استحکام آن جسم استحکامی نیست که از طریق آزمایش کشش به دست می آید ، بلکه آن کمتر است. د راین صورت مسئله ترک واشاعه آن اهمیت پیدا می کند. در اینجا تافنس شکست به رفتار مکانیکی اجسام ، شامل ترک یاد یگر عیوب بسیار ریز سطحی یاداخلی مربوط میشود. البته م یتوان اذعان کرد که عموما تمام اجسام عاری از عیب نبوده و شامل عیوبی هستند . دراین صورت آن چه که د رطراحی و اتنخاب مواد برای ما اهمیت صنعتی ویژه ای دارد ، مشخص کردن حد اکثر تش قابل تحمل برای جسمی است که شامل عیبی با شکل و اندازه معینی است . بنابراین به کمک تافنس شکست می توان توانایی جسمی که بطور کامل سالم نیست راد رمقابل یک بار خارجی وارد برجسم سنجید.معمولابرای تعیین تافنس شکست از آزمایش کشش برروی نمونه آماده شده ای از جنس معین که ترکی بطول وشکل معینی برطبق استاندارد درسطح یاداخل نمونه بطورعمد ایجاد شده استفاده می شود، شکل نمونه به گونه ای د ر دستگاه آزمایش کشش قرار می گیرد که ترک ریز به صورت عمود برامتداد تنش کششی قرار گیرد.

اکنون این سئوال مطرح می شود که به ازای چه مقداری از تنش s جوانه ترک مصنوعی د ر داخل جسم گسترش می یابد تاحدی که منجر به شکست نمونه شود . در اطراف این ترک تنش به صورت پیچیده ای توزیع می شود. حداکثر تنش کششی ایجاد شده د ر راس ترک بزرگتر از خارجیs است و تنش بحرانی ( sc ) نامیده میشود.تا زمانی که sc کوچکتراز استحکام کششی است نمونه نمی شکند .با وارد آمدن تنش به نمونه د ر محدوده الاستیکی ابتدا انرژی پتانسیل در نمونه ذ خیره می شود . موقعی که ترک شروع به رشد می کند بین مقدارکاهش انرژی پتانسیل ذخیره شده د رنمونه وانرژی سطحی ناشی از رشد ترک تعادل برقرار است . تازمانی رشد ترک ادامه پیدا می کند که از انرژی الاستیکی کاسته و به انرژی سطحی افزوده شود، یعنی تالحظه ای که شکست ظاهر گرد د .ابتدا گریفیث با توجه به روابط مربوط به انرژی پتانسیل ذ خیره شده و انرژی سطحی ترک در ماده الاستیکی ،مانند شیشه و تغییر و تبد یل آنها به یک د یگررابطه زیر را ارائه کرد:
s=√2Egs ∕ pa

این رابطه برای حالت تنش د و بعدی برقرار است . gs د ر این رابطه انرژی سطحی ویژه و E مد ول الاستیکی ماده است .برای حالت تغییر شکل د و بعدی ( حالت تنش سه بعدی باصرفنظر از تغییر شکل د ربعد سوم ) رابطه زیر را ارائه کرد:

(s = √ 2Egs ∕ pa(1_ n²


لازم به تذکر است که رابطه گریفیث برای یک ماده الاستیکی شامل ترک بسیار ریز باراس ترک تیز ارائه شد و این رابطه ترک باشعاع راس ترک 0≠r را شامل نمی شو د . بنابراین رابطه گریفیث شرط لازم برای تخریب است ، اما شرط کافی نیست .
در رابطه گریفیث انرژی تغییر شکل پلاستیکی در نظر گرفته نشده است . ازاین ر و اروان انرژی تغییر شکل پلاستیکی ، که برای فلزات و پلیمرها در فرآیند شکست قابل توجه است رادر نظر گرفت و رابطه زیر راارائه کرد:

s = √ 2E(gs+gp) ∕ pa

سپس اروین رابطه گریفیث را برای موادی که قابلیت تغییر شکل پلاستیکی دارند ، به کار برد و باتوجه به میزان رها شدن انرژی تغییر شکل الاستیکی در واحد طول ترک د رحین رشد (G) رابطه زیر را برای حالت تنش د و بعدی ارائه داد :

s = √ EG ∕ pa

بامقایسه با رابطه قبل (gs+gp) 2 = s است . بد ین ترتیب د ر لحظه ناپایداری ، وقتی میزان رها شد ن انزژی تغییر شکل الاستیکی به یک مقدار بحرانی رسید ، شکست پدیدار می شود. در این صورت در لحظه شکست :
برای حالت تنش دو بعدی Gc=pasc²∕E
برای حالت کرنش دو بعدیGc= pa(1- n² ) sc² ∕ E = Kc² ∕ E

Gcمقیاسی برای تافنس شکست یک ماده بوده و مقدار آن برای هر ماده ای ثابت و معین است . بامعلوم بودن این کمیت می توان مشخص کرد که مقدارa به چه اندازه ای باید برسد تاجسم بشکند . بدین ترتیب این رابطه در مکانیزم شکست اهمیت دارد. هرچقدر Gcکوچکتر باشد ، تافنس کمتر یا به عبارتی ماده تردتراست .رابطه زیر را برای حالت تنش دو بعدی می توان به صورت زیر نوشت :

Gc = √ EGc ∕ pa

و برای شرایط تغییر شکل نسبی د و بعدی رابطه زیر ارائه شده است :

(s = √ EGc ∕ pa(1_n²

تعیین تنش شکست بحرانی sc کار چندان ساده ای نیست . اما می توان گفت که به ازای تنشهای جسم باوجود ترک هنوز نمی شکند . از این رو تنش درحد پاینتر از مقدار بحرانی با ضریب شدت تنش K توصیف و رابطه زیر برای آن ارائه شد ه است :

K= fs√ pa

در این رابطه f ضریب هند سه نمونه معیوب ، s تنش اعمالی وa اندازه عیب است ، در شکل تئوری گریفیث اگر عرض نمونه نامحدود فرض شود ، دراین صورت 1 = f است . با انجام آزمایش روی نمونه ای با اندازه معینی از عیب می توان مقدار k ، که به ازای آن ترک شروع به رشد کرده و موجب شکست میشود ، را تعیین کرد . این ضریب شدت تنش بحرانی به عنوان تافنس شکست نامیده میشود و به Kc نشان داده میشود .اماازطرفی ، همچنین به ازای تنش ثابتی درحد کوچکتر از استحکام کششی باافزایش کند ترک ، طول ترک (a) میتواند به مقدار بحرانی برسد و به ازای آن نمونه تخریب شود.

تافنس شکست (Kc) از فولادی با تنش تسلیم MN.m2 2070 با افزایش ضخامت تا تافنس شکست در حالت تغییر شکل صفحه ای (دو بعدی) کاهش می یابد.

کمیتهای Kcو Gc بستگی به ضخامت نمونه دارد. همین که ضخامت نمونه افزایش یافت ، تافنس شکست Kcتا مقدار ثابتی کاهش می یابد ، این مقدار ثابت Kc تافنس شکست تغییر شکل نسبی دو بعدی KIc نامیده می شود . Kc کمیتی مستقل از اندازه نمونه است و در محاسبه استحکام که مستلزم اطمینان بالاست ، به کار میرود .

بنابراین در طراحی در محاسبات باید روابط زیر توجه شود :
s< Kc ∕ √ pa

و در حالت تغییر شکل دو بعدی ( حالت تنش سه بعدی باناچیز بودن تغییر شکل در بعد سوم):
s< K1c ∕ √ pa

کمیتهای K1c و G1c نه فقط برای گسترش ترک ترد ونرم تعریف شد ه است ، بلکه همچنین برای شکست تحت شرایط تنش خوردگی ، خستگی و خزش نیز به کار میرود. در جداول زیر تافنس شکست تعدادی از مواد ارائه شده است .

تافنس شکست تعدادی از مواد طراحی

تافنس شکست در حالت تغییر طول نسبی دومحوری (KIc) تعدادی از مواد

اگر حد اکثر اندازه عیب موجود در قطعه a و مقدار تنش وارد برآن s باشد ، میتوان ماده ای را باتافنس شکست Kc یا K1c به اندازه کافی بالا ، که بتواند از رشد ترک جلوگیری کند، انتخاب کرد. همچنین اگر حداکثر اندازه مجاز عیب موجود درقطعه و تافنس شکست ماده ، یعنی Kc یا K1c، معلوم باشد در آن صورت میتوان حداکثر تنش قابل تحمل برای قطعه رامشخص کرد. از این رو میتوان اندازه تقریبی قطعه را تیین کرد، آن چنان که از پایینتر آمدن حداکثر تنش ایجاد شده از حد مجاز، اطمینان حاصل شود.
همچنین اگر ماده معینی انتخاب و اندازه قطعه و تنش وارد برآن مشخص شده باشد ، حد اکثر اندازه مجاز عیب قابل تحمل را میتوان به طور تقریب بدست آورد.
توانایی هرماده در مقابل رشد ترک به عوامل زیر بستگی دارد:
1- عیوب بزرگ ، تنش مجاز را کاهش میدهد. فنون خاص تولید، مانند جداسازی و کاهش ناخالصیهااز فلز مذاب و فشردن ذرات پودر در حالت داغ در تولید اجزای سرامیکی همگی میتواند موجب کاهش اندازه عیب شود و تافنس شکست را بهبود ببخشد.
2- در فلزات انعطاف پذیر ، ماده مجاور راس ترک میتواند تغییر فرم یابد . به طوری که سبب باز شدن راحت راس ترک و کاسته شدن از حساسیت آن شده و ضزیب شدت تنش را کاهش داده و از رشد ترک جلوگیری میکند معمولا افزایش استحکام فلز انعطاف پذیری را کاهش میدهد و سبب کاهش تافنس شکست میشود ، مانند سرامیکهاوتعداد زیادی از پلیمرها ، تافنس شکست بسیار پایینتر از فلزات دارند.
3- مواد ضخیمتر وصلبتر دارای تافنس شکست کمتر از مواد نازک هستند.4- افزایش سرعت وارد کردن بار، مانند سرعت وارد شدن بار د ر آزمایش ضربه ، نوعاتافنس شکست جسم را کاهش میدهد.5- افزایش درجه حرارت معمولا تافنس شکست راافزایش میدهد، همان گونه که د ر آزمایش ضربه این چنین است .6- با کوچک شدن اندازه دانه ها معمولا تافنس شکست بهبود مییابد ، د ر حالی که با وجود عیوب نقطه ای و نابجاییهای بیشتر تافنس شکست کاهش مییابد. بنابراین مواد سرامیکی دانه ریز میتواند مقاومت به رشد ترک را بهبود بخشند.

دانلود یک جزوه فارسی مفید درزمینه یاتاقانها وبیرینگ ها

دانلود یک جزوه فارسی مفید درزمینه یاتاقانها وبیرینگ ها
 

 


بررسی انواع یاتاقان
فهرست
مقدمه
(Pivot pad) استحکام صفحه نگهدارنده
افزایش و رشد اختلاف قطری و حرارتی
خرابی یاتاقان های غلتشی
علل خرابی یاتاقان ها

دانلود کنید

نانوکامپوزیت ها

نانوکامپوزیت ها

دسته بندی، خواص و کاربرد

1. مقدمه

کامپوزیت ترکیبی است که از لحاظ ماکروسکوپی از چند ماده متمایز ساخته شده باشد، به طوری که این اجزاء به آسانی از یکدیگر قابل تشخیص باشند. به طور نمونه، یکی از کامپوزیت های آشنا بتن است که از دو جزء سیمان و ماسه ساخته شده است.
برای ایجاد تغییر و بهینه کردن خواص فیزیکی و شیمیایی مواد، آن ها را ترکیب یا کامپوزیت می کنیم. به طور مثال پلی اتیلن (PE) که در ساخت چمن های مصنوعی از آن استفاده می گردد، رنگ پذیر نیست و به همین سبب رنگ این چمن ها اغلب مات است. برای برطرف نمودن این نقص به آن وینیل استات می افزایند تا خواص پلاستیکی، نرمیت و رنگ پذیری آن اصلاح شود. در واقع، هدف از ایجاد کامپوزیت، به دست آوردن ماده ای ترکیبی با خواص مورد انتظار می باشد.
نانوکامپوزیت نیز همان کامپوزیت است که یک یا چند جزء از آن، ابعاد کمتر از 100 نانومتر دارد. نانوکامپوزیت ها از دو فاز تشکیل شده اند. فاز اول یک ساختار بلوری است که در واقع پایه یا ماتریس نانوکامپوزیت محسوب می شود و ممکن است از جنس پلیمر، فلز و یا سرامیک باشد. فاز دوم نیز ذراتی در مقیاس نانومتر می باشند که به عنوان تقویت کننده (مواد پرکننده Filler) به منظور اهداف خاص از قبیل استحکام، مقاومت، هدایت الکتریکی، خواص مغناطیسی و ... در درون فاز اول (ماده پایه) توزیع می شوند.
در بحث نانومواد، نانوکامپوزیت ها از جایگاه ویژه ای برخوردار هستند. حضور ذرات و الیاف در ساختار نانوکامپوزیت ها معمولاً باعث ایجاد استحکام در ماده ی پایه می شود. در واقع هنگامی که ذرات و یا الیاف درون یک ماده ی پایه توزیع شوند، نیروهای اعمال شده به کامپوزیت به طور یکنواختی به ذرات یا الیاف منتقل می شود. با توزیع مواد پرکننده درون ماده پایه خصوصیاتی نظیر استحکام، سختی، خواص تربیولوژیکی و تخلخل تغییر می کند. ماده ی پایه می تواند ذرات را به گونه ای از هم جدا نگه دارد که رشد ترک به تأخیر افتد. به علاوه اجزاء نانوکامپوزیت ها بر اثر برهمکنش سطحی بین ماده ی پایه و مواد پرکننده، از خواص بهتری برخوردار می شوند. نوع و میزان برهمکنش ها نقش مهمی در خواص مختلف نانوکامپوزیت ها همچون حلالیت، خواص نوری، خواص الکتریکی و مکانیکی آن ها دارد.
2. طبقه بندی نانوکامپوزیت ها

انواع نانوکامپوزیت را می توان بر اساس ماده پایه آن ها به شرح زیر طبقه بندی کرد:
1. نانوکامپوزیت های پایه پلیمری Polymer matrix nanocomposites (PMNCs)
2. نانوکامپوزیت های پایه سرامیکی Ceramic matrix nanocomposites (CMNCs)
3. نانوکامپوززیت های پایه فلزی Metal matrix nanocomposites (MMNCs)
در ادامه به بررسی خواص و کاربرد هر یک از این نانوکامپوزیت ها پرداخته می شود.
2.1. نانوکامپوزیت های پایه پلیمری
در بین نانوکامپوزیت ها بیشترین توجه به نانوکامپوزیت های پایه پلیمری معطوف است. یکی از دلایل گسترش نانوکامپوزیت های پلیمری، خواص بی نظیر مکانیکی، شیمیایی و فیزیکی آن است. نانوکامپوزیت های پلیمری عموماً دارای استحکام بالا، وزن کم، پایداری حرارتی بالا، رسانایی الکتریکی بالا و مقاومت شیمیایی بالایی هستند. تقویت پلیمرها با استفاده از مواد آلی و معدنی بسیار مرسوم می باشد. بر خلاف تقویت کننده های مرسوم که در مقیاس میکرون می باشند، در نانوکامپوزیت ها تقویت کننده ها ذراتی در ابعاد نانومتر می باشند. با افزودن درصد کمی از نانوذرات به یک پلیمر خالص، استحکام کششی، استحکام تسلیم و مدول یانگ افزایش چشمگیری می یابد. به عنوان مثال، با افزودن تنها 0.04 درصد حجمی میکا (یک نوع سیلیکات) با ابعاد 50 نانومتر به اپوکسی (Epoxy)، مدول یانگ این ماده 58 درصد افزایش خواهد یافت.
دلیل دوم توسعه نانوکامپوزیت های پایه پلیمری و افزایش تحقیقات در این زمینه، کشف نانولوله های کربنی در سال 1991 میلادی است. استحکام و خواص الکتریکی نانولوله های کربنی به طور قابل ملاحظه ای با نانولایه های گرافیت و دیگر مواد پرکننده تفاوت دارد. نانولوله های کربنی موجب رسانایی و استحکام فوق العاده ای در پلیمرها می شوند به طوری که کاربردهای حیرت انگیزی همچون آسانسور فضایی را برای آن می توان متصور شد. از نظر نظامی نیز فراهم کردن هدایت الکتریکی در پلیمرها فرصت های انقلابی را به وجود خواهد آورد. به عنوان مثال از پوسته های الکتریکی-مغناطیسی گرفته تا کامپوزیت های رسانای گرما و لباس های سربازان آینده!
این دسته از کامپوزیت ها به دلیل خواص منحصر به فردی که دارند به طور گسترده ای در صنایع خودرو، هوا-فضا و بسته بندی مواد غذایی گسترش یافته اند. از دیگر کاربردهای نانوکامپوزیت های پلیمری پوشش های مقاوم به سایش، پوشش های مقاوم به خوردگی، پلاستیک های رسانا، حسگرها، آسترهای مقاوم در دمای بالا و غشاهای جداسازی گازها و سیالات نفتی می باشند. به عنوان مثال می توان به نوعی غشاء نانوکامپوزیتی ساخته شده از یک نوع پلیمر و نانولایه های سیلیکا اشاره کرد که توسط محققان دانشگاه کارولینای شمالی ساخته شده است. این غشاء توانایی فوق العاده ای در جداسازی مولکول های آلی از گازها دارد.
2.2. نانوکامپوزیت های پایه سرامیکی
به مواد (معمولاً جامد) ی که بخش عمده ی تشکیل دهنده آن ها غیرفلزی و غیرآلی باشد، سرامیک گفته می شود. سرامیک ها خواص بسیار خوبی نظیر مقاومت حرارتی بالا، پایداری شیمیایی خوب و استحکام مکانیکی مناسبی دارند، اما به دلیل پیوندهای یونی و کووالانس موجود در سرامیک ها چقرمگی شکست آن ها پایین است و تغییر شکل پلاستیک این مواد محدود می باشد. به منظور رفع این مشکل با اضافه کردن و جداسازی الیاف و ذرات مناسب، می توان چقرمگی شکست را بالا برد. اگر این تقویت کننده ها ابعاد نانومتری داشته باشند بالاترین چقرمگی شکست به دست می آید.
به طور مثال در شکل1 نانوکامپوزیت نیترید سیلیسیم حاوی نانولوله های کربنی چند دیواره، نشان داده شده است. برای ساخت این نانوکامپوزیت از پرس ایزواستاتیک گرم استفاده می شود. از خواص مکانیکی قابل توجه این نانوکامپوزیت ها می توان به استحکام خمشی و مدول الاستیک قابل توجه آن ها اشاره کرد.


شکل1
3.2. نانوکامپوزیت های پایه فلزی
کامپوزیت های پایه فلزی، کم وزن و سبک بوده و به علت استحکام و سختی بالا کاربردهای وسیعی در صنایع خودرو و هوا-فضا پیدا کرده اند. اما این کاربردها به لحاظ کم بودن قابلیت کشش در این کامپوزیت ها محدود شده است. تبدیل کامپوزیت به نانوکامپوزیت سبب افزایش استحکام و رفع محدودیت های مذکور می شود.
نانوکامپوزیت های پایه فلزی اصولاً مشابه روش های متالوژی پودر تولید می شوند. این نانوکامپوزیت ها کاربردهای متفاوتی دارند خصوصاً نانوکامپوزیت های پایه منیزیم که در سال های اخیر به دلیل چگالی کم، استحکام بالا، مقاومت به خزش بالا و پایداری حرارتی مناسب، گسترش چشمگیری داشته اند. نانوکامپوزیت های پایه منیزیم کاربردهای گسترده ای در صنایع هوایی و خودروسازی دارند.
نانوکامپوزیت های پایه فلزی حاوی نانولوله های کربنی نیز از اهمیت ویژه ای برخوردارند. نانولوله ها می توانند سبب افزایش و یا بهبود خواصی نظیر رسانایی، استحکام، مقاومت و .. در فلزات شوند.
3. نانوکامپوزیت و فردا

مهمترین تأثیر نانوکامپوزیت ها در آینده از طریق کاهش وزن خواهد بود. اخیراً کامپوزیت های نانوذره سیلیکاتی به بازار خودروها وارد شده اند. در سال 2001 هم جنرال موتور و هم تویوتا شروع تولید محصول با این مواد را اعلام کردند. مزیت این مواد استحکام و کاهش وزن است که مورد آخر صرفه جویی در سوخت را نیز به همراه خواهد داشت.
علاوه بر این نانوکامپوزیت ها به صنعت بسته بندی مواد غذایی نیز راه یافته اند تا سدی بزرگتر در برابر نفوذ گازها و کاهش فساد باشند. محققان معتقدند که افزودن دو درصد نانوذره رس به بسته بندی، 75 درصد تبادل اکسیژن و دی اکسید کربن را کاهش می دهد که این امر به افزایش طول مدت نگهداری مواد غذایی کمک می کند. در مورد ضدباکتریهایی نظیر نانوذرات نقره، این نانوذرات از رشد عوامل زنده فاسده کننده مواد غذایی مانند باکتریها و قارچ ها جلوگیری می کنند.
خواص تعویق آتشگیری نانوکامپوزیت های حاوی نانوذرات سیلیکا، می تواند به خوبی مصارفی در سرویس خواب، پرده ها و محصولاتی از این دست پیدا کند.

دانلود دینامیک ویرایش 6

دینامیک از واژه لاتین به معنی حرکت‌شناسی گرفته شده است و در مکانیک کلاسیک بررسی دلایل حرکت و به بیانی دقیق بررسی حرکت به کمک نیروها و قوانین مربویه می‌باشد.

دید کلی

در حالت کلی حرکت یک ذره از دو دیدگاه مختلف می‌تواند مورد بررسی قرار گیرد به بیان دیگر می‌توان گفت، بطور کلی مکانیک کلاسیک که در آن حرکت اجسام مورد تجزیه و تحلیل قرار می‌گیرد، شامل دو قسمت سینماتیک و دینامیک است . در بخش سینماتیک از علت حرکت بخشی به میان نمی‌آید و حرکت بدون توجه به عامل ایجاد کننده آن بررسی می‌شود. بنابراین در سینماتیک حرکت بحث بیشتر جنبه هندسی دارد.

اما در دینامیک علتهای حرکت مورد توجه قرار می‌گیرند. یعنی هر ذره یا جسم همواره در ارتباط با محیط اطراف خود و متأثر از آنها فرض می‌شود محیط اطراف حرکت را تحت تأثیر قرار می‌دهد. به عنوان مثال فرض کنید، جسمی با جرم معین بر روی یک سطح افقی در حال لغزش است. در این مثال سطح افقی به عنوان یکی از محیطهای اطراف جسم با اعمال نیروی اصطکاک در مقابل حرکت جسم مقاومت می‌کند. عوامل مؤثر بر حرکت

حرکت یک ذره معین را ماهیت و آرایش اجسام دیگری که محیط ذره را تشکیل می‌دهند، مشخص می‌کند. تأثیر محیط اطراف بر حرکت ذره با اعمال نیرو صورت می‌گیرد. بنابراین مهمترین عاملی که در حرکت ذره باید مورد توجه قرار گیرد، نیروهای وارد بر ذره و قوانین حاکم بر این نیروها می‌باشد. قوانین حرکت

isbn دانلود کتاب دینامیک مریام

در قلمرو مکانیک کلاسیک ، یعنی در سرعتهای کوچکتر از سرعت نور حرکت اجسام مختلف بر اساس قوانین حرکت نیوتن بطور کامل قابل تشریح است. این قوانین عبارتند از:

قانون اول

این قانون که در واقع بیانی در مورد چارچوبهای مرجع می‌باشد، به این صورت بیان می‌شود هر جسم که در حال سکون ، یا در حالت حرکت یکنواخت در امتداد خط مستقیم باشد، به همان حال باقی می‌ماند مگر آنکه در اثر نیروهای خارجی مجبور به تغییر آن حالت شود.

 قانون دوم

این قانون به صورتهای مختلف بیان می‌شود که یکی از آنها بر اساس تعریف اندازه حرکت خطی و دیگری برای تعریف شتاب حرکت می‌باشد. در حالت اول چنین گفته می‌شود که میزان تغییر اندازه حرکت خطی یک جسم ، با نیروی وارد بر آن متناسب و هم جهت می‌باشد. اما بر اساس تعریف شتاب گفته می‌شود که هر گاه بر جسمی نیرویی وارد شود جسم در راستای آن نیرو ، شتاب می‌گیرد که اندازه آن نیرو متناسب است.

 

قانون سوم

این قانون که تحت عنوان قانون عمل و عکس‌العمل معروف است، حتی در بعضی از رفتارهای اجتماعی نیز مصداق دارد. بیان قانون سوم به این صورت است که هر عملی را عکس‌العملی است که همواره با آن برابر بوده و در خلاف جهت آت قرار دارد. به عنوان مثال هنگام راه رفتن در روی زمین ، نیرویی از جانب و به طرف جلو بر ما وارد می‌شود که سبب حرکت ما به سمت جلو می‌شود، برعکس ما نیز بر زمین نیرو وارد کرده و آن را به سمت عقب می‌رانیم. ولی چون جرم زمین در مقایسه با جرم ما خیلی زیاد است، حرکت زمین به سمت عقب نامحسوس است.

 

قضیه کار و انرژی

در مکانیک برخلاف آنچه در بین عامه رایج است، واژهٔ کار زمانی به کار می‌رود که بر روی جسمی نیرویی اعمال شده و آن را جابجا کند ، و یا موجب تغییر در حرکت آن شود. بنابراین در دینامیک حرکت کار مفهوم با ارزشی است. اما کار به دو صورت می‌تواند بر روی جسم انجام شود. فرض کنید، جسمی با سرعت معین در حال حرکت است، اگر بر روی جسم کار انجام شود، این کار یا می‌تواند سرعت حرکت جسم را افزایش دهد و یا اینکه مانع حرکت شده و سرعت جسم را کاهش دهد.

در حالت اول که سرعت جسم افزایش پیدا می‌کند، اصطلاحا گفته می‌شود که کار انجام شده ، سبب ذخیره انرژی در جسم می‌شود. اما در حالت دوم ما با صرف انرژی و انجام کار ، سرعت جسم را کاهش می‌دهیم. از اینرو انرژیی که وابسته به سرعت جسم بوده و انرژی جنبشی نام دارد، تعریف می‌شود و قضیه کار و انرژی جنبشی بیان می‌کند که کار انجام شده بر روی جسم متناسب با تغییر انرژی جنبشی آن است. مکانیک لاگرانژی و حرکت جسم صلب

حرکت ذره یک حالت تقریباً ایده آل و آرمانی از حرکت واقعی اجسام در فضای سه بعدی است. یعنی در بعضی موارد ، تقریب حرکت جسم به عنوان یک ذره نمی تواند مفید واقع باشد. بنابراین در حالت کلی جسم به صورت یک جسم صلب در فضا در نظر گرفته می‌شود و با تعریف مختصات تعمیم یافته (که متناسب با نوع حرکت بعد آن معین می‌شود ) و نیروهای تعمیم یافته و با استفاده از معادلات لاگرانژ حرکت جسم مورد بررسی قرار می‌گیرد. معادلات لاگرانژ و یا به بیان بهتر فرمولبندی مکانیک لاگرانژ نسبت به مکانیک نیوتنی (بر اساس قوانین نیوتن) حالت کلی‌تر و کاملتری می‌باشد.

در مکانیک لاگرانژی ابتدا کمیتی به عنوان لاگرانژی (و یا هامیلتونین که برابر با تفاضل انرژی پتانسیل از انرژی جنبشی است) که به صورت مجموع انرژی جنبشی و انرژی پتانسیل جسم تعریف می‌شود، محاسبه می‌گردد. و با قرار دادن آن در معادلات لاگرانژ ، معادله حرکت جسم حاصل می‌شود.


دانلود کتاب دینامیک مریام

 

قالب جدید هیدروفرمینگ

مجموعه قالب جدید هیدروفرمینگ برای بهبود پرشدگی گوشه های قالب در ساخت قطعات لوله ای پله ایقطعات لوله ای بدون درز مانند لوله های پله ای، لوله های با مقطع چهارگوش و لوله های مخروطی، معمولا با استفاده از فرایند هیدروفرمینگ لوله تولید می شوند. در شکلدهی این قطعات، دستیابی به شکل های با گوشه های تیز بسیار در عمل مشکل یا ناممکن است. در این مقاله با ارایه مجموعه قالب جدیدی، پر شدن گوشه های قالب برای تولید لوله های پله ای در فرایند هیدروفرمینگ مطالعه شده است. برای قالب ارایه شده، به روش اجزای محدود شبیه سازی شده، چگونگی پر شدن قطعه در درون حفره قالب مطالعه شده است. به منظور تایید نتایج شبیه سازی، این مجموعه قالب ساخته شده، مورد آزمایش قرار گرفته است. نتایج به دست آمده ضمن تایید نتایج شبیه سازی، نشان می دهد که در قالب جدید می توان به محصولاتی با گوشه های کاملا تیز رسید. پیچیده نبودن ساختار قالب و پایین بودن فشار شکلدهی برخی مزایای قالب ارایه شده است. همچنین، توزیع ضخامت قطعات شکل داده شده در قالب جدید نسبت به قطعات تولید شده در قالب متداول یکنواخت تر بوده است.

دانلود

آشنایی با مکانیک مواد مرکب (کامپوزیت)

 
 
 
در کاربردهای مهندسی، اغلب به تلفیق خواص مواد نیاز است. به عنوان مثال در صنایع هوافضا، کاربردهای زیر آبی، حمل و نقل و امثال آنها، امکان استفاده از یک نوع ماده که همه خواص مورد نظر را فراهم نماید، وجود ندارد. به عنوان مثال در صنایع هوافضا به موادی نیاز است که ضمن داشتن استحکام بالا، سبک باشند، مقاومت سایشی و uv خوبی داشته باشند و .... از آنجا که نمی توان ماده‌ای یافت که همه خواص مورد نظر را دارا باشد، باید به دنبال چاره‌ای دیگر بود. کلید این مشکل، استفاده از کامپوزیتهاست. کامپوزیتها موادی چند جزئی هستند که خواص آنها در مجموع از هرکدام از اجزاء بهتر است.ضمن آنکه اجزای مختلف، کارایی یکدیگر را بهبود می‌بخشند. اگرچه کامپوزیتهای طبیعی، فلزی و سرامیکی نیز در این بحث می‌گنجند، ولی در اینجا ما تنها به کامپوزیتهای پلیمری می‌پردازیم
در کامپوزیتهای پلیمری حداقل دو جزء مشاهده می‌شود:
1. فاز تقویت کننده که درون ماتریس پخش شده است.
2. فاز ماتریس که فاز دیگر را در بر می‌گیرد و یک پلیمر گرماسخت یا گرمانرم می‌باشد که گاهی قبل از سخت شدن آنرا رزین می‌نامند.
خواص کامپوزیتها به عوامل مختلفی از قبیل نوع مواد تشکیل دهنده و ترکیب درصد آنها، شکل و آرایش تقویت کننده و اتصال دو جزء به یکدیگر بستگی دارد.از نظر فنی، کامپوزیتهای لیفی، مهمترین نوع کامپوزیتها می باشند که خود به دو دستة الیاف کوتاه و بلند تقسیم می‌شوند. الیاف می‌بایست استحکام کششی بسیار بالایی داشته، خواص لیف آن (در قطر کم) از خواص توده ماده بالاتر باشد. در واقع قسمت اعظم نیرو توسط الیاف تحمل می‌شود و ماتریس پلیمری در واقع ضمن حفاظت الیاف از صدمات فیزیکی و شیمیایی، کار انتقال نیرو به الیاف را انجام می‌دهد. ضمناَ ماتریس الیاف را به مانند یک چسب کنار هم نگه می‌دارد و البته گسترش ترک را محدود می‌کند. مدول ماتریس پلیمری باید از الیاف پایینتر باشد و اتصال قوی بین الیاف و ماتریس بوجود بیاورد. خواص کامپوزیت بستگی زیادی به خواص الیاف و پلیمر و نیز جهت و طول الیاف و کیفیت اتصال رزین و الیاف دارد. اگر الیاف از یک حدی که طول بحرانی نامیده می‌شود، کوتاهتر باشند، نمی‌توانند حداکثر نقش تقویت کنندگی خود را ایفا نمایند. الیافی که در صنعت کامپوزیت استفاده می‌شوند به دو دسته تقسیم می‌شوند:
الف)الیاف مصنوعی ب)الیاف طبیعی.
کارایی کامپوزیتهای پلیمری مهندسی توسط خواص اجزاء آنها تعیین میشود. اغلب آنها دارای الیاف با مدول بالا هستند که در ماتریسهای پلیمری قرار داده شدهاند و فصل مشترک خوبی نیز بین این دو جزء وجود دارد.ماتریس پلیمری دومین جزء عمده کامپوزیتهای پلیمری است. این بخش عملکردهای بسیار مهمی در کامپوزیت دارد. اول اینکه به عنوان یک بایندر یا چسب الیاف تقویت کننده را نگه میدارد. دوم، ماتریس تحت بار اعمالی تغییر شکل میدهد و تنش را به الیاف محکم و سفت منتقل میکند.

سوم، رفتار پلاستیک ماتریس پلیمری، انرژی را جذب کرده، موجب کاهش تمرکز تنش میشود که در نتیجه، رفتار چقرمگی در شکست را بهبود میبخشد.تقویت کنندهها معمولا شکننده هستند و رفتار پلاستیک ماتریس میتواند موجب تغییر مسیر ترکهای موازی با الیاف شود و موجب جلوگیری از شکست الیاف واقع در یک صفحه شود.بحث در مورد مصادیق ماتریسهای پلیمری مورد استفاده درکامپوزیتها به معنای بحث در مورد تمام پلاستیکهای تجاری موجود میباشد. در تئوری تمام گرماسختها و گرمانرمها میتوانند به عنوان ماتریس پلیمری استفاده شوند. در عمل، گروههای مشخصی از پلیمرها به لحاظ فنی و اقتصادی دارای اهمیت هستند.در میان پلیمرهای گرماسخت پلیاستر غیر اشباع، وینیل استر، فنل فرمآلدهید(فنولیک) اپوکسی و رزینهای پلی ایمید بیشترین کاربرد را دارند. در مورد گرمانرمها، اگرچه گرمانرمهای متعددی استفاده میشوند، peek ، پلی پروپیلن و نایلون بیشترین زمینه و اهمیت را دارا هستند. همچنین به دلیل اهمیت زیست محیطی، دراین بخش به رزینهای دارای منشا طبیعی و تجدیدپذیر نیز، پرداخته شده است. از الیاف متداول در کامپوزیتها می‌توان به شیشه، کربن و آرامید اشاره نمود. در میان رزینها نیز، پلی استر، وینیل استر، اپوکسی و فنولیک از اهمیت بیشتری برخوردار هستند.