وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک کتاب،مقالات،نرم افزار،آموزش نرم افزار،حلال،جزوات،فیلم،کاتالوگ،پروژه،مجلات،سایت،اخبار،استاندارد،هندبوک، مهندسی مکانیک ،مهندسی مکانیک،کارشناسی ارشد مهندسی مکانیک،دکترا مهندسی مکانیک،مهندسی مکانیک، تلگرام ، تلگرام
وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک کتاب،مقالات،نرم افزار،آموزش نرم افزار،حلال،جزوات،فیلم،کاتالوگ،پروژه،مجلات،سایت،اخبار،استاندارد،هندبوک، مهندسی مکانیک ،مهندسی مکانیک،کارشناسی ارشد مهندسی مکانیک،دکترا مهندسی مکانیک،مهندسی مکانیک، تلگرام ، تلگرام

مقدمه ای بردینامیک سازه ها وائروالاستیک

درزمینه مباحث ایرودینامیک وائروالاستیک یکی از کتابهای خوب وکاربردی کتاب Introduction to Structural Dynamics and Aeroelasticity مقدمه ای بردینامیک سازه ها وائروالاستیک میباشد

دراین پست این کتاب کاربردی برای دانلود تقدیم شما عزیزان میگردد:

دانلود از سرور رپیدشیر

دانلود کنید.

دانلود از سرور 4Shared

دانلود کنید.

دانلود با لینک مستقیم

دانلود کنید.

پسورد www.chechel.blogfa.com

دانلود رایگان پاورپوینت آموزشی آیرودینامیک 1

خب... سری اول پاورپوینت های دکتر میرزایی به همراه تمرینات درس آیرودینامیک برای دانلود قرار داده شده:

دانلود سری پاورپوینت اول (۱-۵) دانلود تمرین

نحوه ی فرود هواپیما بر عرشه ناو هواپیما بر!!!!

نحوه ی فرود هواپیما بر عرشه ناو هواپیما بر!!!!


وقتی هواپیمایی برعرشه ناوهواپیمابری فرودمل آید،سرعتش بایددرمسافتی حدود60متراز240کیلومتردرساعت به صفربرسد.وزن هواپیماممکن است23تن باشد،بنابراین مقدارانرژی جنبشی که بایدخنثی شودقابل توجه است.درعین حال آهستگی هواپیمانیزبایدیکنواخت باشد،بدین معناکه نبایدحرکتی ناگهانی رخ دهدکه یاباعث شکستگی گردن خلبان شودیابه اسکلت هواپیمافشاربیش ازحدواردکندیامسیرفرودرامختل کند.درحالت ایده آل،شتاب منفی بایدتدریجی باشدیعنی ازصفربه ماکزیمم مقداربرسدوسپس تاوقتی هواپیمابه توقف کامل برسد،ثابت بماند.




به این منظور،مکانیسمهای بازدارنده ای طراحی شده اندکه دراصل همه آنهامشابهند.درقسمت انتهایی دم هواپیمایک قلاب نصب شده که هنگام فرود،پایین ترازسطح چرخهاقرارمی گیرد.وقتی هواپیمابه عرشه می آیدقلاب به یک کابل بازدارنده که درعرشه درجهت عمودبرمسیرحرکت هواپیماکشیده شده است گیرمی کند.این کابل توسط فنرهای فولادی کمانی شکل چندین سانتیمتربالاترازسطح عرشه قرارمی گیردتاقلاب بتواندآن رابگیرد.دوسرکابل بازدارنده به دنده جذب انرژی متصل است که برای پاسخگویی به وزن فزاینده هواپیماهای مدرن،تکنولوژی آن درسالهای اخیرپیشرفت زیادی کرده است.سیستم جذب کننده که درناوهای بریتانیاوآمریکاازآن استفاده فراوان می شودبرپایه عملکرداهرمی یک پیستون استواراست که مایعی ئیدرولیکی راازطریق یک دریچه کنترل به جلومی راند.کابل بازدارنده وقتی کشیده شودازمیان چرخهای سیستم قرقره هدایت کننده(یادراصطلاح دریانوردی چرخ طناب خور)عبورمی کندکه درواقع ازطریق یک سری قرقره که روی سیلندرثابت واهرم متحرک نصب شده اندوزیرعرشه قراردارند،حرکت رابه اهرم منتقل می کند.جابجایی کابل بازدارنده اصلی درطولی مثلابرابر5مترآخرین قرقره راکه به پیستون متصل است فقط 30سانتیمترجابجامی کند.این کاهش جابجایی،اندازه پیستون رامحدودمی کندومزیت مکانیکی مناسبی نتیجه می دهد.نیروی بازدارنده درواقع فشارئیدرولیکی داخل سیلندراست که به سرعت اهرم بستگی دارد.وقتی ازسرعت هواپیماودرنتیجه اهرم کاسته شود،این نیروکاهش می یابدوبه مقدارثابتی می رسد.دریچه کنترل به ترتیبی تنظیم شده است که وقتی کابل بیشتری بیرون کشیده شود،محدودیت زیادتری ایجادکند.این تنظیم به گونه ای است که باوزن های مختلف هواپیماهای گوناگون تطبیق کند.جریانی که ازسیلندرئیدرولیکی خارج می شودبه محفظه ای می رودودرآنجابرای ذخیر کردن انرژی،گازموجوددرمحغظه راتحت فشارقرارمی دهد.ازاین انرژی برای تنظیم دوباره سیستم وبازگرداندن کابل بازدارنده به حالت اولیه اش استفاده می شود.گازفشرده مایع ئیدرولیکی راباکمک یک پمپ به داخل سیلندربرمی گرداندتاازاتلاف انرژی درسیستم جلوگیری کند.سرعت تنظیم دوباره سیستم بسیاراهمیت داردزیرادرمدتی کوتاه تعدادزیادی هواپیماممکن است فرودآیند0بعدازفرودیک هواپیمابرای اطمینان بیشترکابل بازدارنده به سرعت بازدیدوسپس محکم درمحل سابق خودکشیده می شود،کل این کارفقط20دقیقه طول می کشد.



سنگینی هواپیماهای مدرن نیروی دریایی،این تدابیررادرجایی که فضای عرشه محدوداست نامناسب می کند.ناوهای آمریکابزرگترازناوهای بریتانیاهستندوآمریکایی هاطول عرشه پروازرابرای دستیابی به فضای توقف طولانی تری که موردنیازاست افزایش داده اند.ولی درسال1968 یک ناوهواپیمابربریتانیابه نام آرک رویال به سیستم دیگری مجهزشددراین سیستم هنوزکابل بازدارنده موجوداست ولی به جای اهرم ئیدرولیکی ازروش آب فشانی کم انرژی استفاده می شود.درمقایسه باسیستم قدیمی ترقرقره ها،کارسیستم جدیدآب فشانی مستقیم تراست،یک چرخ طناب خرمثل سابق کابل رابه زیرعرشه می بردامااین بارهیچ کاهش مکانیکی وجودنداردوسیم مستقیماًروی یک پیستون درمحفظه ای به طول 60مترولبریزازآب عمل می کند.دراین سیلندریک سوراخ وجودداردکه درزمان کشیده شدن کابل بازدارنده به نوبت بسته می شوندودرنتیجه نیروی تقریباًثابتی حاصل می شود.آب ازداخل سوراخهابه بیرون افشانده می شودولی توسط یک سیلندربیرونی که سیلندراصلی رااحاطه کرده است،جمع آوری می شود.یکی ازمزایای این سیستم آن است که می توان آن رابرای پذیرش انواع هواپیماهایی که وزنشان بین5/4 تا23 تن است برنامه ریزی کردمسئله وزن مشکلاتی درزمینه طراحی این سیستم ایجادکرده است که البته اکنون رفع شده اندسرعت لازم برای تنظیم دوباره سیستم بایدهمان سرعت سیستم قبلی باشدیعنی بایدپیستون راظرف 20ثانیه به طورکامل به عقب حرکت دادومطمئن شدکه سیلندرکاملاًپرازآب است،زیراوجودهرنوع حباب هوادرسیلندربرهواپیمایی که درحال توقف است شوکهایی فاجعه آمیزواردمی کند.دریکی ازروشهای تنظیم،ازیک سیستم برگشت کننده برمبنای سیلندرئیدرولیکی ویک سری قرقره استفاده می شود.

مبانی تئوریک حرکت موشک

این مقاله شامل مبانی تئوریک حرکت موشک و نیروها و گشتاورهای وارده بر موشک به هنگام پرواز است.


فایل ویژه ی دانلود


حجم : 8.7 mb

قدرت و گشتاور در موتورهای احتراق داخلی

 

کار ((Work :

زمانی که نیرو وارد شده روی یک جسم باعث تغییر مکان آن بشود ، روی آن جسم کار صورت گرفته است .مقدار آن برابر

نیرو × جابجایی است . در سیستم SI واحد نیرو نیوتن است که طبق تعریف برابر نیرویی است که به واحد جرم (Kg) ، شتابی معادل (1m/s) می دهد. واحد دیگری که از آن استفاده می شود ، کیلو گرم نیرو (Kgf) است که نیرویی است که به واحد جرم شتابی معادل شتاب ثقل (9.81m/s²) می دهد. واحد های مشابهی در سیستم انگلیسی مانند پوند جرم و پوند نیرو نیز کاربرد دارند.

گشتاور : (Torque)

حرکت دورانی ای که بر یک جسم یا محور اعمال می شود، گشتاور نام دارد که عبارت است از ، نیرو × بازوی اعمال نیرو.

(بازوی اعمال نیرو برابر فاصله ی عمودی راستای نیرو تا مرکز گردش است). منظور از گشتاور موتور اتومبیل ، گشتاور وارد به میل لنگ می باشد. واحد گشتاور در SI نیوتن-متر(N.m) و در سیستم انگلیسی پوند-فوت(lb.ft) است. در تبدیل این واحد ها به یکدیگر داریم :( 1 lb.ft =1.356 N.m )

باید توجه داشت که ، با آ نکه در ظاهر گشتاور و کار هر دو از حاصل ضرب نیرو و فاصله بدست می آید ، ولی یک اختلاف در فیزیک این دو وجود دارد ، به این ترتیب که گشتاور وارد شده به یک جسم لزومی برای گردش آن ایجاد نمی کند ولی چنانچه نیروی وارد شده بر یک جسم باعث حرکت ان نشود کار انجام نشده . در موتور اتومبیل گشتاور تولید شده همواره باعث گردش میل لنگ مشود .

قدرت (Power) :

قدرت یا توان برابر کار انجام شده در واحد زمان یا گشتاور اعمال شده در سرعت زاویه ای (رادیان بر ثانیه) است . واحد آن در سیستم متریک وات (W) یا کیلو وات (kW)است و در سیستم انگلیسی اسب بخار (HP) است.

, 1W=N.m/s اسب بخار انگلیسی , HP=550 lb.ft/s اسب بخار متریک HP=75 Kg.m/s

در تبدیل ان واحد ها به یکدیگر داریم :

متریکHP 1.36 = انگلیسی1kW = 1.34 HP

حجم جابجایی موتور((Engine Displacement Volume:

منظور از این عبارت ، حجم جابجایی موتور است . حجم جابجایی هر سیلندر برابر با حجم جاروب شده توسط پیستون در یک کورس حرکت(Stroke) خود است که برابر فاصله ی بین نقطه ی مرگ بالا TCو نقطه ی مرگ پایینBC می باشد .

حجم موتور برابر است با : V=n×π×L×(d/2)² که در این رابطه n تعداد سیلندر ، L کورس پیستون ، d قطر پیستون و V حجم موتور است ، که معمولا با cc ، لیتر یا in³ بیان می شود.

از آنجا که حجم موتور نشان دهنده ی میزان هوا یا مخلوطی است که موتور می تواند به درون بکشد ، تا برای احتراق مورد استفاده قرار دهد ، بنابراین عامل تعیین کننده ای در توانایی تولید قدرت و گشتاور توسط موتور است .

نسبت قطر سیلندر و کورس پیستون هم در قدرت و گشتاور تولید شده تاثیر دارند ولی مطالب مربوط به آنها از حوصله ی این نوشته خارج است ، و در کتاب های طراحی موتور به صورت کامل بیان شده است .

نسبت تراکم ((Compression Ratio :

نسبت تراکم نشان دهنده ی میزان فشرده شدن گاز در داخل سیلندر بوده و عبارت است از نسبت بیشترین حجم سیلندر ،یعنی زمانی که پیستون در نقطه ی مرگ پایین است ، به کمترین حجم سیلندر یعنی زمانی که پیستون در نقطه ی مرگ بالا است.

هر چه نسبت تراکم یک موتور بیشتر باشد ، قدرت و گشتاور بیشتری می تواند تولید کند ، این نسبت هم دارای محدودیت هایی است .

راندمان حجمی (Volumetric Efficiency) :

راندمان حجمی عبارت است از نسبت حجمی از هوا ، در فشار و دمای اتمسفر که در زمان مکش ، به داخل سیلندر کشیده می شود ، به حجم سیلندر . این مقدار به صورت درصدی ، بیان می شود و مقدار ایده آل آن 100% است. ولی به علت افت فشار سیال ( جریان هوا یا مخلوط سوخت-هوا ) در داخل سیستم تغذیه (از فیلتر هوا تا داخل سیلندر ) ، مانع ایجاد شده به وسیله ی سوپاپ ها و زمان بندی آن ها و از این دست مسا ئل ، همواره مقدار واقعی کمتر از 100% است . با افزایش ارتفاع از سطح دریا که فشار کم می شود ، راندمان حجمی موتور هم کم می شود ، چون این اختلاف فشار بین بیرون و داخل سیلندر است که عامل جریان یافتن سیال به داخل سیلندر است .

رسیدن به راندمان 100% و حتی بالا تر از 100% تنها با تغذیه ی اضافی یا پرخورانی موتور ممکن است . در این حالت هوا به صورت اجباری توسط سوپرشارژر (Supercharger) یا توربوشارژر (Turbocharger) به داخل سیلندر فرستاده می شود . عمل تغذیه ی اضافی موتور را با هر وسیله ای که انجام شود ، سوپرشارژ کردن (Supercharging) موتور می نامند . یکی از راه های افزایش قدرت و گشتاور موتور ، افزایش راندمان حجمی آن است .

عملکرد موتورها (Engins Performance) :

موتورهای درون سوز برای شروع به کار ، نیازمند رسیدن به یک سرعت اولیه ی مشخص می باشند ، این سرعت اولیه توسط استارت تامین می شود. پس از روشن شدن ، کمترین دور ممکن برای ادامه ی کار موتور ، دور آرام (Idle) نامیده می شود . با افزایش دور موتور از دور آرام ، قدرت و گشتاور تولید شده توسط آن ابتدا به سرعت افزایش یافته و پس از رسیدن به یک دور مشخص گشتاور به ماکزیمم خود می رسد . از این دور به بعد گشتاور رو به کاهش می گذارد . علت اساسی این کاهش پایین آمدن راندمان حجمی موتور است ، که خود به دلیل کاهش زمان لازم برای پر و خالی شدن سیلندر ها ، افت فشار در سیستم تغذیه ی موتور و مشکلات ناشی از زمان بندی سوپاپ ها که همه زایده ی دور زیاد موتور هستند ، ایجاد می گردد . معمولا ماکزیمم گشتاور در دوری بدست می آید که ماکزیمم راندمان حجمی وجود دارد . از این دور به بعد قدرت تا مدتی باز هم افزایش می یابد ولی با شدتی کمتر از قبل ؛ علت این موضوع با رابطه ی بین قدرت و گشتاور (P=T×ω) توجیه می شود . به این ترتیب که تا دور ماکزیمم گشتاور ، هم دور موتور و هم گشتاور در حال افزایش هستند و لذا قدرت هم به شدت افزایش می یابد . از دور ماکزیمم گشتاور به بعد ، گشتاور رو به کاهش می گذارد ؛ اما باز هم افزایش دور موتور، تا دور مشخصی ، بر کاهش گشتاور غالب است و لذا قدرت هنوز افزایش می یابد ولی با شدتی کمتر از قبل . از یک دور به بعد ، که در آن دور قدرت به ماکزیمم خود رسیده ، اثر کاهش گشتاور ، بیشتر از افزایش دور موتور می شود و از این دور به بعد قدرت هم کم می شود .

برای موتور ها معمولا تنها اعداد ماکزیمم گشتاور و قدرت در دور معین بیان می شود . با اینکه این اعداد برای مقایسه مفیدهستند ، ولی بیانگر تمام جنبه های عملکردی موتور نیستند ،زیرا هر موتور در هر دور معین یک قدرت و یک گشتاور مشخص تولید می کند . اگربخواهیم اطلاعات دقیقی از عملکرد یک موتور بدست آوریم ، باید منحنی های تغییر گشتاور و قدرت تولید شده توسط آن را ،در تمام دورها بررسی کنیم . ممکن است یک موتور ماکزیمم گشتاور بالایی داشته باشد ، که

مطلوب بنظر می رسد ، اما در طرفین ماکزیمم ، گشتاور افت بسیار زیادی داشته باشد و همچنین ممکن است ماکزیمم

گشتاور موتوری دیگر کمتر ، اما توزیع آن بسیار مناسب تر باشد ، به طوری که در اطراف نقطه ی ماکزیمم ، کسر زیادی

از مقدار ماکزیمم در دسترس باشد .

تلاش طراحان موتور بر این است که موتور، بیشترین گشتاور خود را در تمام محدوده ی کاری خود تولید نماید . برای دستیابی به این منظور ازمانیفولدهای تغذیه با مقطع بزرگ و سیستم اگزوز با کمترین پس فشار (Back Pressure) می توان استفاده کرد . این مسائل باعث بهبود تنفس و تولید قدرت بیشتردر دورهای بالا می گردد .

شکل شماره ی 1، منحنی های تغیرات قدرت و گشتاور بر حسب دور موتور در حالت حداکثر گاز (Full Throttle) را برای موتور 2 لیتری توربوی آئودی 1991-20V Turbo Quattro نشان می دهد .منحنی ای که شیب بیشتری دارد مربوط به منحنی تغییرات قدرت و منحنی دیگر مربوط به تغییرات گشتاور است . محور عمودی چپ ، محور قدرت و محور عمودی راست محور گشتاور بوده و محور افقی محور دور موتور بر مبنای دور بر دقیقه (rpm) است .

ماکزیمم گشتاور این موتور N.m310 در rpm2000 و ماکزیمم قدرت آنkW=217HP 155 در rpm5700 است .

با دقت در شکل می توان دید که ، نرخ افزایش قدرت (شیب منحنی قدرت) از دور ماکزیمم گشتاور به تدریج کم شده و پس از رسیدن به نقطه ی ماکزیمم خود ، به شدت کاهش می یابد .

شکل شماره ی 2، منحنی های تغییرات گشتاور و قدرت وm.e.p. را بر حسب دور موتور را برای حالت تمام گاز ، برای موتور 4.2 لیتری با تنفس طبیعی آئودی 1992-V8 را نشان می دهد . ماکزیمم گشتاور این موتور در دور موتور 4000 rpm برابر باlb-ft 276 است و قدرت آن در rpm 5800 به مقدار حداکثر HP 295 می رسد . در بررسی نمودار به مشاهداتی که در جدول قبل بیان شد ، خواهیم رسید .

با دقت در منحنی فشار موثر میانگین ( mep or Mean Effective Pressure) می توان دقیقا به رابطه ی گشتاور ایجاد شده و راندمان حجمی پی برد .

در مقایسه ی شکل 1و 2 ، به سهولت می توان شکل منحنی m.e.p. را در شکل 1 پیشبینی کرد . در بررسی منحنی های گشتاور و قدرت در دو شکل می توان به عملکرد توربوشارژر در بالا بردن راندمان حجمی و در نتیجه هموار شدن نمودار گشتاور پی برد .

در موتور توربوشارژ شده ماکزیمم گشتاور در دور موتور پایین تری بدست آمده و بعد از رسیدن به ماکزیمم افت گشتاور به کندی صورت می گیرد ، که این باعث پیدا شدن یک شیب مناسب برای قدرت موتور می شود و موتور می تواند در دورهای مختلف ، توانایی خود را در شتاب گیری آشکار سازد. این در حالی است که در موتورهای تنفس طبیعی به دلیل تخت نبودن منحنی گشتاور ، توان مناسب برای شتاب گیری تنها در محدوده ی کوچکی از دورهای موتور ، که در آن گشتاوری نزدیک به گشتاور ماکزیمم تولید می شود ، قابل دسترسی خواهد بود .

اگر بخش زیادی از گشتاور در دور موتور پایین قابل دسترس باشد ، موتور تولید شده از نظر مصرف سوخت ، موتوری اقتصادی خواهد بود . معمولا کمترین مصرف سوخت زمانی نتیجه می شود که حرکت در دنده ی مناسب و با بیشترین گشتاور تولید شده توسط موتور انجام شود .

توجه به این نکته قابل اهمیت است که ، گشتاور موتور تا رسیدن به چرخ های متحرک اتومبیل در گیربکس و دیفرنسیال ، متناسب با نسبت دنده های آن ها قابل تغییر است .

استانداردهای اندازه گیری قدرت و گشتاور موتور :

شاخصی که معمولا برای قدرت موتورها عنوان می شود ، توان ترمزی (BHP or Brake Horse Power) است این نام از نوعی ترمز موتور که برای اندازه گیری قدرت موتور استفاده می شده به جا مانده است ؛ امروزه این دستگاه جای خود را به دینامومتر داده است . دینامومتر وسیله ای شبیه به یک دینام الکتریکی است که برای جذب قدرت موتور استفاده می شود .

توان موتور را بعلاوه از روش های خط ویلان ، آزمایش مورس ، آزمایش موتور گردانی و روش شتاب معکوس نیز می توان سنجید .

توان ترمزی را می توان میزان قدرتی تعریف کرد که در محل فلایویل موتور قابل دسترس است و می تواند صرف به حرکت درآوردن اتومبیل شود . این میزان قدرت برابر است با میزان قدرتی که از احتراق حاصل می شود ، منهای قدرتی که برای غلبه بر اصطکاک داخلی ، خنک کاری موتور و گرداندن متعلقات موتور ، صرف می شود . البته تلفات حرارتی نباید نادیده گرفته شوند .

توان ترمزی به صورت خالص (Net) و ناخالص (Gross) عنوان می شود . توان خالص ، مقدار اندازه گیری شده در حالتی از آزمایش موتور است که کلیه ی متعلقات لازم برای بکارگیری موتور در مورد کاربرد عملی، شامل پمپ روغن ، پمپ آب ، پروانه ی رادیاتور ، دینام وسیستم استاندارد اگزوز اتومبیل ، روی آن نصب شده اند ؛ که هر یک از این وسایل کمی از توان مفید موتور را می کاهند . رقم ناخالص مربوط به حالتی است که همه یا برخی از این متعلقات در هنگام آزمایش روی موتور نصب نشده باشند .

مقادیرناخالص معمولا بین 10 تا 20 درصد بیشتر از مقادیرخالص هستند . بدیهی است که قدرت خالص موتور مقیاس دقیق تری برای ارائه ی مشخصات فنی موتور است ، بنابراین امروزه تمام سازندگان موظف به ارائه ی ارقام خالص جهت معرفی محصولات خود هستند .

راندمان حجمی موتور و راندمان حرارتی ترمزی (محوری) ، راندمان حرارتی اندیکاتوری ، راندمان مکانیکی ، راندمان روبشی ، راندمان نسبی ، راندمان تغذیه و راندمان احتراقی بر میزان توان و گشتاور تاثیر گذارند که بررسی همه ی این مسائل در این نوشتار ممکن نبود .

مراجع :

1- موتورهای دیزل ، نوشته ی اد می ، ترجمه ی امینی – افقی ، انتشارات کارنو ، 1381

2- موتورهای احتراق داخلی ، نوشته ی برات قبادیان ، انتشارات دانشگاه شهرکرد ، 1380

3- www.SJM Autotechnik.com

** برای مشاهده ی چند نمودار تورک / قدرت -دور موتور به سایت زیر مراجعه کنید:

http://www.sjmautotechnik.com/trouble_shooting/hpgraph.html#200t

آشنایی با ایرفویل (Airfoil) - قسمت ششم

پارامترهای تأثیرگذار در انتخاب ایرفویل:

با توجه به مطالبی که در 5 قسمت قبلی آمد، امیدواریم بینش اولیه و جامع درباره ایرفویل پیدا کرده باشید. حال به عنوان یک مهندس آیرودینامیک می خواهیم یک ایرفویل مناسب را از میان انبوهی از ایرفویلهای طراحی شده انتخاب کنیم.... به نظر شما چه پارامترهایی در انتخاب ما موثر است؟ در ادامه این مباحث تا آنجا که مقدوره پارامترهای اصلی را معرفی خواهیم کرد...

متخصصان آیرودینامیک و طراحان هواپیما برای انتخاب ایرفویل مناسب معمولا به چند منحنی مهم که از ایرفویلها بدست می آید توجه می کنند... این منحنی ها به شرح زیر هستند:

1) منحنی تغییرات ضریب برآ به زاویه حمله (Cl-alpha)

2) منحنی تغییرات L/D (یا همان Cl/Cd) به زاویه حمله (L/D-alpha)

3) منحنی تغییرات ضریب گشتاور ایرفویل به زاویه حمله (Cm-alpha)

4) منحنی تغییرات ضریب پسا به ضریب برآ (Cd-Cl)

منحنی تغییرات ضریب برآ به زاویه حمله (Cl-alpha)

این منحنی در قسمتهای قبلی به طور کامل شرح داده شد. سه پارامتر در این نمودار وجود دارد که برای طراحی بال هواپیما حائز اهمیت هست: 1) ضریب برآی ماکزیمم 2) زاویه حمله واماندگی 3) زاویه حمله برآ صفر ( Zero lift angle of attack - زاویه ای که در آن نیروی برآی ایرفویل صفر است.... این زاویه غالبا منفی است)

ضریب برآی ماکزیمم هر چقدر بیشتر باشد هواپیما می تواند در هنگام فرود با سرعت کمتر بنشیند که این خود باعث کوتاه شدن باند فرود می شود... در هنگام برخاست هم هواپیما می تواند زودتر از زمین بلند شود.... علاوه براین بالا بودن ضریب برآی ماکزمیم مصرف سوخت را کاهش داده و هواپیما می تواند محموله بیشتری را حمل کند.

زاویه واماندگی از دیگر مشخصه های مهم ایرفویل است.... هر چه قدر این زاویه بزرگتر باشد جریان دیرتر از روی ایرفویل جدا می شود و پدیده واماندگی دیرتر اتفاق می افتد. این امر برای جنگنده ها که نیاز به مانور بالا دارند حیاتی است. محدوده این زاویه تقریبا 10 تا 15 درجه (بسته به نوع ایرفویل) می باشد.

منحنی تغییرات L/D (یا همان Cl/Cd) به زاویه حمله (L/D-alpha)

پارامتر L/D یا همان نسبت برآ به پسا یکی از مهمترین مشخصه ها ایرفویل و هواپیماست.... این پارامتر معروف به « نسبت کارایی آیرودینامیکی » هست... و معمولا طراحان و متخصصان آیرودینامیک با عبارت L over D آن را تلفظ می کنند. (پس اگر جایی شنیدید تعجب نکنید!)... تلاشهای زیادی شده است که تا می توانند این نسبت را افزایش دهند زیرا افزایش آن به زبان ساده یعنی افزایش نیروی برآ در عین کاهش نیروی پسا.... این تعریف باخودش بسیاری از مشکلات آیرودینامیکی و طراحی را حل می کند! در این منحنی٬ زاویه حمله ای که در آن L/D ماکزیمم می شود٬مهمترین پارامتر است:

این زاویه بسیار با ارزش است .... زیرا اگر بال هواپیما در این زاویه حمله پرواز کند بهترین کارایی را خواهد داشت... به همین دلیل است که این زاویه به عنوان زاویه نصب بال انتخاب می شود.... محدوده این زاویه بین 3 تا 5 درجه برای ایرفویل است. مقدار L/D ماکزیمم هم پارامتر مهم دیگر این منحنی است.

منحنی تغییرات ضریب گشتاور ایرفویل به زاویه حمله (Cm-alpha)

ابتدا باید ذکر شود که این منحنی مربوط به ایرفویل است و ربطی به منحنی تعادل هواپیما ندارد. در منحنی تعادل هواپیما٬ ضریب گشتاور کل هواپیما نسبت به زاویه حمله آن مورد بررسی قرار می گیرد اما در اینجا منظور، ضریب گشتاور ایرفویل نسبت به تغییر زاویه حمله است.... با توجه به تعریف مرکز آیرودینامیکی می توان فهمید که چرا ضریب گشتاور حول مرکز آیرودینامیکی در منحنی زیر ثابت است:

مهمترین پارامتر این منحنی مقدار خود ضریب گشتاور است که یک طراح و متخصص آیرودینامیک مایل است تا می تواند این ضریب را کم کند. زیرا کم بودن آن به طراح اجازه می دهد که تعادل و پایداری بهتری را برای هواپیما به دست بیاورد.

منحنی تغییرات ضریب پسا به ضریب برآ (Cd-Cl)

این منحنی مهترین منحنی یک ایرفویل می باشد. در این منحنی کمترین مقدار Cd را Cdmin و Cl متناظر آن را Cli (ضریب برآی ایده آل)می نامند. در این منحنی سه پارامتر بسیار با اهمیت اند. پارامتر اول مقدار حداقل ضریب پسا (Cdmin) است که هر قدر کمتر باشد مطلوب تر است. پارامتر دوم ضریب برآی ایده آل (Cli- Ideal Lift Coefficeint) که در آن ضریب پسا حداقل است و آخرین پارامتر ضریب برآی طراحی (Cld- Design Lift Coefficeint) که در آن نسبت L/D ماکزیمم است.

برای بدست آوردن نسبت برآی طراحی کافیست از مبدا مماسی به سمت راست منحنی بکشیم. محل تماس این مماس با منحنی همان مقدار Cld می باشد.

آشنایی با ایرفویل (Airfoil) - قسمت پنجم

در این قسمت با انواع دیگری از ایرفویلها آشنا می شویم:

ایرفویل انحنادار: این ایرفویل ها دارای انحنا هستند. یعنی به غیر خط وتر، خط دیگری به نام خط انحنا (camber line) وجود داره که فاصله سطح بالایی و سطح پایینی ایرفویل از این خط یکی هست. در ایرفویل متقارن این خط منطبق بر خط وتر می شد:

همانطور که در قسمت سوم مباحث آموزشی درباره ایرفویل بحث شد، انحنا از جهتی مفید است و از جهت دیگر مضر.... از این جهت مفید است که با افزایش انحنای ایرفویل، مقدار نیروی برآ افزایش می یابد و این امر برای ما مطلوب است... در عین حال افزایش انحنا مقدار نیروی پسا را نیز افزایش می دهد و هم چنین باعث می گردد که ایرفویل در زاویه حمله کوچکتری دچار واماندگی شود که این شرایط برای ما مطلوب نیست...

به همین علت هست که در هواپیما ها از ایرفویل با انحنای متغییر استفاده می شود. شاید سوال شود که چطور می شود انحنای ایروفیل را تغییر داد؟... به سادگی ... این کار توسط ابزاری به نام فلپ (flap) انجام می گیرد. در واقع فلپ بالکی است که در انتهای ایرفویل قرار می دهند و با تغییر زاویه آن، انحنای ایروفیل تغییر می کند. فلپها انواع مختلفی دارند که در شکل زیر مشاهده می کنید:

فلپ ها معمولا نزدیک ریشه بال هواپیما (در مجاورت بدنه) قرار می گیرند که شکل زیر گویای این امر است:

البته برخی از هواپیماها بیش از یک فلپ دارند:

اینجاست که متوجه می شویم که چرا هواپیماها در هنگام بلند شدن از زمین (take off) و فرود (landing) از فلپ استفاده می کنند. در این وضعیت ها به خاطر پایین بودن سرعت هواپیما، نیروی برآ برای پرواز کافی نیست، بنابراین با استفاده از فلپها انحنای ایرفویل بالها افزایش و در نتیجه نیروی برآ افزایش می یابد. و همچنین در بقیه شرایط پروازی که سرعت هواپیما زیاد است، از فلپها استفاده نمی شود، چون استفاده از فلپ مساویست با افزایش انحنای ایرفویل و در نتیجه افزایش نیروی پسا.... در شکل زیر بوئینگ 747 را مشاهده می کنید که در حالت فرود کاملا فلپها را باز کرده است:

ایرفویل فوق بحرانی (supercritical): وقتی هواپیماها نزدیک سرعت صوت می شوند، در بعضی از قسمت های آنها امواج ضربه ای ایجاد می گردد. در اینجا قصد نداریم که این امواج را شرح دهیم اما همین قدر بدانید که با تشکیل این امواج، نیروی پسا به شدت افزایش پیدا می کند. برای جلوگیری از این امر در سال 1960 میلادی ایرفویلهایی موسوم به فوق بحرانی (supercritical) طراحی شد. خاصیت آنها این بود که موج ضربه ای ضعیف تری نسبت به ایرفویلهای معمولی ایجاد می کردند و هواپیماهایی که این ایرفویلها در آنها به کار رفته شده بود می توانستند تا سرعتهای بیشتری شتاب بگیرند.

در شکل زیر هواپیمای f-8 را مشاهده می کنید که مجهز به ایرفویل فوق بحرانی است:

سطح بالایی این ایرفویلها نسبتا مسطح است. اما سطح زیرین، نزیک لبه فرار انحنایی وجود دارد که بارزترین مشخصه ایرفویلهای فوق بحرانیست.

آشنایی با ایرفویل (Airfoil) - قسمت چهارم

مرکز فشار ایرفویل: نقطه ای در ایرفویل می باشد که برآیند تمامی بارهای گسترده آیرودینامیکی در آن نقطه وارد می گردد.

مرکز فشار معمولا در محاسبات به کار نمی رود زیرا با تغییر زاویه حمله مکان آن در ایرفویل تغییر می کند و باعث پیچیده شدن محاسبات می شود. به همین دلیل از مرکز آیرودینامیکی استفاده می کنند که در ادامه خواهد آمد. هر چقدر زاویه حمله افزایش پیدا می کند، مرکز فشار به سمت لبه حمله ایرفویل حرکت می کند. شکل زیر گویای این امر هست:

مرکز آیرودینامیکی ایرفویل: نقطه ایست که گشتاور حاصل از نیروهای آیرودینامیکی مستقل از تغییرات زاویه حمله ایرفویل می باشد. این نقطه از این جهت اهمیت زیادی دارد. در واقع ما برآیند نیروهای گسترده آیرودینامیکی را به این نقطه منتقل کرده و متناسب با‌ این جابه جایی نیرو ٬گشتاوری را با نام Mدر نظر می گیریم (منظور از گشتاوری که در ابتدای تعریف آمده است همین گشتاور M است). که در شکل زیر مشخص است:

مرکز آیرودینامیکی حدودا در فاصله C/4 (یک چهارم طول وتر ایرفویل) از لبه حمله ایرفویل قرار دارد.

ایرفویل متقارن: ایرفویل متقارن ایرفویلی است که انحنایی(‍‍camber) ندارد و به عبارت دیگر فاصله هر دونقطه بالایی و پایینی آن از وتر یکی می باشد. برای مثال ایرفویل زیر متقارن است:

 

در آیرودینامیک نظریه ای وجود دارد به نام نظریه کلاسیک مقطع بال نازک که حاصل آن برای ایرفویل متقارن این است:

1) رابطه ضریب برآ با زاویه حمله به صورت زیر است:

2) مرکز فشار و مرکز آیرودینامیکی، هردو در نقطه ربع وتر (C/4) قرار دارند.

خب نتایج بالا به چه درد می خورد؟!! بیایید آزمایش زیر را انجام دهیم :

صفحه تخت نمونه ای از یک ایرفویل متقارن است. بنابراین مرکز فشار آن یعنی نقطه ای که برآیند نیروهای آیرودینامیکی به آن وارد می شود در یک چهارم وتر آن است.

اگر این صفحه را به جلو پرتاب کنیم، دور خود به گردش در می آید. مطابق شکل زیر:

دلیل این امر واضح است. مرکز ثقل صفحه در وسط آن قرار دارد حال آنکه محل اعمال نیروهای آیرودینامیکی در یک چهارم وتر است. این امر گشتاوری را مطابق شکل ایجاد می کند:

حال اگر یک وزنه روی صفحه قرار دهید به طوری که محل مرکز ثقل با مرکز فشار منطبق گردد (یعنی مرکز ثقل در یک چهارم وتر قرار گیرد)، آنگاه با پرتاب آن به سمت جلو شاهد پرواز پایدار صفحه خواهید بود.

آشنایی با ایرفویل (Airfoil) - قسمت سوم

نکاتی درباره نمودار «ضریب برآ - زاویه حمله»

زاویه حمله واماندگی : زاویه حمله ایست که در آن واماندگی رخ می دهد و در نمودار متناظر است با زاویه حمله ای که در آن ضریب برا ماکزیمم می شود. طبیعی است که هر چه قدر این زاویه بزرگتر باشد برای ما مطلوب تر است زیرا هواپیما می تواند در زاویه حمله بیشتری پرواز کند و قابلیت مانورپذیری بیشتری پیدا می کند.

زاویه حمله برآ صفر : زاویه ایست که نیروی برآی ایروفویل در آن زاویه صفر می باشد. این زاویه معمولا کوچکتر مساوی صفر است. به عبارت دیگر این زاویه، در ایرفویلهای متقارن صفر و در ایرفویلهای نامتقارن (انحنا دار) منفی می باشد.

شیب برآ: در واقع شیب منحنی ضریب برآ در قسمت خطی می باشد که معمولا با a نمایش می دهند.

شاید سوال شود که آیا این منحنی مهم و پرکاربرد برای یک ایرفویل معین همیشه منحصر به فرد است؟ پاسخ منفیست!! عدد رینولدز (Re) پارامتریست که باعث تغییر شکل این نمودار می گردد. با تغییر عدد رینولدز تنها ضریب برآی ماکزیمم و به تبع آن زاویه حمله واماندگی تغییر می کند و بقیه پارامترها از جمله شیب برآ و زاویه حمله برا صفر ثابت می ماند.

تغییرات هندسی ایرفویل

تغییر ضخامت ایرفویل: افزایش ضخامت ایرفویل ضریب برآی ماکزیمم را ابتدا افزایش می دهد و سپس کاهش....

مثلا در شکل زیر می توانید تفاوت دو منحنی ضریب برا برای دو ایرفویل نازک(صفحه تخت) و ضخیم (NACA 4412) را مشاهده کنید:

تغییر انحنا (camber) ایرفویل:‌ با افزایش انحنای ایرفویل، ضریب برآ به صورت زیر افزایش می یابد:

همانطور که می بینید افزایش انحنای ایرفویل این تاثیر مثبت را دارد که ضریب برآ افزایش پیدا کند و زاویه حمله برآصفر منفی تر می گردد... اما این عیب نیز وجود دارد که انحنای ایروفویل باعث جدایش سریعتر جریان می گردد یعنی زاویه واماندگی کوچکتر شده و سریعتر اتفاق می افتد.

تغییرات بالا را میتوانید به وضوح در آدرس زیر که توسط ناسا طراحی شده است به صورت آنلاین امتحان کنید و لذت ببرید! البته لازمه استفاده از این نرم افزار نصب برنامه جاوا بر روی سیستمتان هست:

http://www.grc.nasa.gov/WWW/k-12/airplane/foil3.html

آشنایی با ایرفویل (Airfoil) - قسمت دوم

بیایید با دیگر مشخصات و داده های ایرفویل آشنا بشویم... ایرفویل ها در واقع یک تعریف هستند و از داده های آنها در عالم واقعی استفاده می شود....ایرفویل ها با بال هواپیما یک فرق اساسی دارند و آن اینست که بال هواپیما یک بال متناهی است در حالی که ایرفویل بال نامتناهی است و این فرق اساسی باعث می شود که ضرایب برآ، پسا و گشتاور در این دو برابر نباشد.

هر ایرفویل ضرایب برا، پسا و گشتاور مربوط به خود را دارد. در زیر ضریب برآی ایرفویل و تأثیرات هندسه آن بر این ضریب را بررسی خواهیم کرد:

ضریب برا وابستگی مشهودی به زاویه حمله دارد. بر همین اساس نمودار معروف و پرکاربردی از این وابستگی می توان رسم کرد:

همانطور که از شکل پیداست این نمودار به دو قسمت خطی و غیر خطی تقسیم می شود. با افزایش زاویه حمله ایرفویل، ضریب برآ افزایش می یابد اما این افزایش حدی دارد.... در واقع این حد را نقطه واماندگی تعیین می کند یعنی اینکه زاویه حمله به حدی می رسد که بعد از آن نیروی برآ با افت شدیدی روبرو خواهد شد.

در ناحیه خطی نمودار ، جریان حول مقطع بال هموار است و همانطور که از تصویر مشاهده میشود خطوط جریان اکثرا با سطح تماس دارند، اما همینکه زاویه حمله بیشتر می شود، جریان تمایل بیشتری به جدایش از سطح بالای ایرفویل پیدا می کند و ناحیه جدا شده از سطح ایرفویل بزرگ و بزرگتر خواهد شد.

همانطور که از شکل پیداست دنباله بزرگی از هوای مرده در پشت ایرفویل به وجود می آید، در داخل این ناحیه جدایش، جریان در حال گردش است که به آن جریان معکوس می گویند. جدایش جریان از آثار لزجت است و نتیجه جدایش جریان افت نیروی برآ و ازدیاد نیروی پسا است. وقتی جدایش جریان به حدی میرسد که نیروی برا به صورت ناگهانی افت شدیدی پیدا می کند، می گوییم که ایرفویل به نقطه واماندگی رسیده است (همان نقطه که در نمودار ضریب برا از حالت خطی خارج می شود). بیشترین مقدار ضریب برا که قبل از پدیده واماندگی رخ می دهد، ضریب برآی ماکزیمم (Cl max) نشان می دهند. ضریب برآی ماکزیمم یکی از پارامترهای مهم در ایرفویل هاست و بخش بزرگی از تحقیقات جدید در خصوص بالاتر بردن این پارامتر می باشد.

آشنایی با ایرفویل (Airfoil) - قسمت اول

ایرفویل (Airfoil)

به مقطع هر جسمی که در جریان هوا قرار می گیرد، ایرفویل گویند. ایرفویلهایی که در شکل مشاهده می کنید، مقاطعی هستند که در بال هواپیما و یا در پره های ملخ موتور استفاده می گردند و ایجاد نیروی برآ می کنند. در اینجا قصد داریم اطلاعات فنی و حرفه ای درباره ایرفویل هواپیما را بررسی کنیم.

قسمت جلویی ایرفویل لبه حمله (Leading Edge) نامیده می­شود و اولین محل تماس با هوا می­باشد و از نظر طراحی ظرافت و حساسیت بالایی دارد. قسمت انتهایی، لبه­ی فرار (Trailing Edge) نامیده می­شود و مانند یک لبه­ی تیز است و در انتهای این محل هوای قسمت بالایی و قسمت پایینی به یکدیگر می­رسند. روی آن «سطح زبرین» یا «انحنای رویی» (Upper Camber)نامیده می­شود و زیر آن «سطح زیرین» یا «انحنای زیرین» (Lower Camber) نامیده می­شود.

خط وتر (Cord line)خط مستقیمی که لبه ی حمله را به لبه ی فرار وصل می­کند. طول خط وتر را با حرف c نشان می­دهند.
خط انحنای میانه ( mean camber line)
خطی است که هر نقطه از آن به یک اندازه از مرزهای سطوح زیرین و رویی فاصله دارد و این فاصله­ها عمود بر خط مرکزی اندازه­گیری می­شود. به بیان ساده­تر خط میانی خطی است که شکل ایرفویل را به دو قسمت مساوی در جهت طول ایرفویل تقسیم می­کند.

مقطع بال هواپیماها استاندارد گذاری های مختلفی دارد. یکی از معروفترین استانداردها مربوط به ایرفویلهایی موسوم به ناکا (National Advisory Committee for Aeronautics - NACA) می باشد. ایرفویلهای ناکا سری های مختلفی دارند که در زیر هر کدام را به اختصار شرح می دهیم:

سری 4 رقمی: رقم اول نشاندهنده بیشترین خمیدگی بر حسب صدم وتر – دومین رقم، فاصله نقطه بیشترین خمیدگی از لبه حمله بر حسب دهم وتر – دو رقم آخر، بیشترین ضخامت برحسب صدم وتر

برای مثال در مقطع بال NACA 3513 اگر طول وتر را با C نمایش دهیم:

یا در مثالی دیگر ایرفویل NACA 2412 دارای بیشترین انحنا در 0.02 طول وتر که در فاصله 0.4 طول وتر از لبه حمله قرار گرفته است و بیشترین ضخامت 0.12 طول وتر می باشد:

خانواده‌های مختلفی از ایرفویل‌ها توسط سازمانهای طراحی و مراکز تحقیقاتی مختلف ارائه شده است که این ایروفویل‌ها حاصل فعالیت‌‌های تجربی و یا محاسبات عددی می‌باشند.از مشهورترین آنها می‌توان به خانواده‌‌های زیر اشاره نمود:

NACA series 4, 5, 6 - Eppler - Clarck - AH (Althaus) - Boeing

برای درک بیشتر و آشنایی با سری های بعدی ناکا، به آدرسهای زیر بروید:

http://www.ppart.de/aerodynamics/profiles/NACA4.html

http://people.clarkson.edu/~pmarzocc/AE429/The%20NACA%20airfoil%20series.pdf

ادامه دارد....

تصاویر متحرکی از مکانیسمها ی مکانیکی

در این تاپیک تصاویر متحرکی از مکانیسمها ی مکانیکی گذاشته میشه
لطفا شما هم کمک کنید تا یه مجموعه بزرگ داشته باشیم


موتورهای محوری هواپیما
از این موتور در جنگ جهانیه اول و اوایل جنگ جهانیه دوم و در بعضی موتورهای نیمه صنعتیه حال حاظر استفاده میشده و میشه
این موتور هوا خنک و نسبت به وزن بسیار قوی است و سرعت بالایی میتواند داشته باشد
نام دیگر این موتور موتور ستاره ای است
البته این موتور 5سیلندر است اما به شخصه در فیلمهای مستند تا 12 سیلندر هم دیدم

گیربکس (جعبه دنده) دستی خودرو
این جعبه دنده 4سرعته+دنده عقب تقریبا مدل جعبه دنده ی پیکان است و تقریبا منقرض شده اما اصول جهبه دنده ها همین منوال اما با کمی تغییره به غیر از cvt
چرخ خیاطی
نوعی از ماشین بخار از این مکانیسم برای تبدیل حرکت رفت و برگشتی به دورانی استفاده میکرده
موتور ساعت از این مکانیسم کلی برای حرکت غیر پیوسته و منظم استفاده میکنه البته ساعتهای جدید متفاوت هستن واز سیمپیچ و خازن و کوارتز استفاده میکنند
پلوس خودروهای دیفرانسیل جلو بدون این قطعه ماشین دیفرانسیل جلو وجود نداشت
و خودروها هیچوقت به این شکل نمیتوانستند ساخته شوند چون مجبور بودند در همه ی محورها ی انتقال دورانی مستقیم و بدون انحراف باشند
اسلحه ناوهای جنگی

موتور اتومبیل از نوع گردان (Wankel) که اختراع بسیار جالبی است و در برخی خودرو های خاص استفاده می شود و قدرت بسیار بالایی دارد و میتواند خیلی بیشتر از هر موتور درونسوز دیگری سوخت را به انرژی تبدیل کند

پمپ ها و قانون پمپ ها

شرح قوانین حاکم بر پمپها و تئوری آنها :
پمپهای گریز از مرکز ماشین هایی هستند که با استفاده از نیروی گریز از مرکز ( عکس العمل‌سیال در برابر نیروی مرکز گرا ) سیالات را جابه جا می‌کنند . در ادامه به موارد مهم در موضوع سیالات اشاره می شود .
نیروی وزن باعث می شود که اگر سیال در یک ارتفاع باشد به ارتفاع پایین تر جریان یابد . انرژی‌پتانسیل ، انرژی است که در سیال ذخیره می شود و مایع دارای فشار بالاتر انرژی پتانسیل بیشتری‌ دارد ، بنابراین سیال از سطوح با فشار بالا به سطوح با فشار پایین جریان می یابد . در صورتی که فشار دو مخزن برابر باشد یا اینکه اختلاف ارتفاع نداشته باشند سیال میان آنهاجریان نمی یابد . بنابراین در این حالت ها نیاز به استفاده از پمپ داریم . همچنین میتوان از پمپ ‌به منظور افزایش مقدار سیال جابه جاشده ، ( دبی) استفاده کرد . پس میتوان نتیجه گرفت یک پمپ با افزایش انرژی سیال آنرا جابجا می کند . در پمپ‌ های سانتریفیوژ این عمل توسط پروانه انجام می شود ، که با چرخاندن ‌سیال انرژی آن را می افزاید . سیال با عبور از ورودی پمپ وارد چشم ( مرکز ) پروانه می‌گردد و با دوران پروانه از لبه آن خارج می‌گردد . هر چه سرعت پروانه بیشتر باشد سیال سریعتر جابجامی شود . در زیر یک نمونه محفظه و پروانه نشان داده شده است .
هنگامی که سیال وارد پوسته( محفظه) می شود سرعت‌آن کاهش‌ می‌یابد . چون سرعت سیال‌کاهش می یابد فشار آن افزایش یافته و از طرف دیگر چون سیال با فشار زیاد در لبه و دور از چشمی خارج می‌گردد باعث ایجاد یک ناحیه کم فشار در چشمی شده که در اثر آن‌جریان سیال به درون چشمی امکان پذیر می‌گردد . ( اختلاف فشار ) وقتی سیال به خارج پمپاژ می شود سرعت آن افزایش می یابد این افزایش سرعت در خروجی‌ به شکل فشار بسیار زیاد و بخشی از آن در محفظه به صورت فشار نمایان می شود .
پروانه که به عنوان پیشران‌می باشد توسط یک منبع محرک بیرونی چرخانده می شود . محرک‌به شکل های مختلف الکتروموتور ، توربین و موتور با سوخت فسیلی می باشد . نیروی محرک‌توسط یک شافت به پیشران منتقل می‌گردد . محلی که شافت از محفظه پمپ خارج می شود ،‌ دچار نشتی می‌گردد برای رفع این مشکل از آب بند یا جعبه لایی استفاده می شود . در جایی که‌لایی قرار می‌گیرد ممکن است که شافت به شدت دچار ساییدگی گردد به همین دلیل باید از مواد قابل انعطاف استفاده کرد . همچنین برای جلوگیری از سایش ، از یک آستین متحرک‌ شافت استفاده می کنند . آستین به راحتی تعویض می‌گردد.
سیال از ناحیه خروجی با فشار بالا به پشت ناحیه مکش نشتی پیدا می کند . به همین جهت‌ فضای بین آنها را به حلقه های تحت‌ سایش مجهز می‌کنند حلقه سایش ‌بدنه ‌ثابت اما حلقه سایش پیشران همراه آن دوران می کند . بستن مناسب حلقه های سایش مقدار نشتی را به اندازه‌ زیادی کاهش می‌دهد . البته مقداری نشتی برای روانکاری لازم است ، سیال نشت شده سبب ‌روانکاری و خنک سازی حلقه های سایش می شود و همچنین از سایش رینگها در مقابل هم‌جلوگیری می‌کند . با ضعیف شدن رینگها فضای میان آنها زیاد شده و نشتی بیشتر می شود . در اینصورت باید رینگ ها تعویض شوند . همچنین حلقه های تحت سایس بوسیله سیال پمپاژ شده روانکاری می‌شوند و اگر روانکاری‌ مناسب نباشد حلقه ها باهم تماس داشته ، ساییده می‌شوند ، گرم شده و جام می‌کنند .به همین علت نباید یک پمپ گریز از مرکز را تا زمانی که از سیال پر نشده راه اندازی کرد .
ارزیابی پمپ های گریز از مرکز :
پمپ ها براساس مشخصات و ویژگیهای پمپاژشان ارزیابی می‌شوند.
برای مثال ، پمپی که(100 )گالن در دقیقه ظرفیت دارد ، ظرفیت ارزیابی(100) گالن بر دقیقه را‌دارد . ظرفیت معمولا فاکتوری برای ارزیابی یک پمپ است . فشار ورودی و مکش نیز بر ارزیابی موثرند . با ارزیابی پمپ ما می توانیم بهترین پمپ لازم با بهترین بازده را انتخاب کنیم .
ظرفیت
مقدارمایعی که پمپ در واحد زمان جابجا میکند ، ظرفیت پمپ می باشد که برحسب‌گالن بر دقیقه بیان می‌گردد . البته واحدهای دیگری نیز استفاده می شود .
ظرفیت پمپ با افزایش سرعت پیشران افزایش می یابد و در واقع با سرعت در ارتباط است . اما همواره تغییر سرعت عامل افزایش ظرفیت نمی‌باشد . نکته مهم این است که عامل افزایش‌ظرفیت ، سرعت مماسی وارد برسیال از سوی ملخی های پروانه است. که کاملا می دانیم‌ به شعاع بستگی دارد ، بنابراین ظرفیت پمپ با پروانه بزرگتر نسبت به پمپی با پروانه کوچکتر ‌با سرعت دورانی برابر ، بیشتر است زیرا سرعت مماسی آن بالاتر می‌باشد .
وقتی که سیال با سرعت زیاد از پروانه جدا شده وارد بدنه پمپ می شود درآنجا سرعت به فشار تبدیل شده و فشار خروجی زیادمی شود . پس افزایش سرعت مماسی باعث افزایش فشارخروجی‌ پمپ می شود . پس نتیجه‌ای‌که گرفته می شود اینست که با افزایش سرعت پیشران می توان ظرفیت‌پمپ را افزایش داد و یا با ثابت ماندن سرعت دورانی ، پروانه ی بزرگتری بکار برد.
هد و فشار
فشار را معمولا نیروی وارد بر واحد سطح سیال تعریف می‌کنند و در صنعت معمولا برحسب اینچ مربع بیان می‌گردد . واحد های دیگری نیز بوده که کاربرد آنها در صنعت کمتراست‌ برای هد میتوان تعاریف گوناگونی ارائه کرد . در مورد پمپ معمولا هد رابه نسبت ارتفاع و بلندی بیان می‌کنند . باید گفت که هد در واقع شکلی از انرژی جرم سیال است ومی تواند به شکل‌گرما نیز باشد . در اینجا در مورد هد ارتفاع که کاربرد بیشتری دارد بحث می‌کنیم . هنگامی که ‌ارتفاعی از سیال داشته باشیم از طرف آن فشاری بر سطح زیرین وارد می شود که هد ارتفاع‌گویند . هد ارتفاع هم غالبا بر حسب فوت بیان می‌گردد .
فشاری که از هد ناشی می شود به قطر ظرف بستگی ندارد .
در هر نقطه از پایین ظرف ، فشار فقط به هد یا ارتفاع سیال بستگی دارد .
فشار در سیال را بوسیله فشارسنج معین می‌کنند . فشار سنج در واقع فشار نسبی رامشخص می‌کند . یعنی فشار جو را از فشار مطلق کم می‌کند . رابطه بین فشار مطلق و فشار نسبی به شکل زیر است :
فشار نسبی + فشار جو = فشار مطلق
همچنین با استفاده از رابطه مقابل می توان هد فشار را بدست آورد :
P = g. h
بنابراین فشار ناشی از هد یک سیال به وزن مخصوص آن بستگی دارد .
پس دو سیال با وزن مخصوص متفاوت و هد یکسان فشار مختلفی اعمال می‌کنند.
فشار بخار
اگر مایعی در ظرفی سربسته بخار شود ، مولکولهای بخار نمی توانند از نزدیکی مایع دور شوند و تعدادی از مولکولهای بخارضمن حرکت نامنظم خود ، به فاز مایع برمی‌گردند.
سرعت بازگشت مولکولهای بخار به فاز مایع ، به غلظت مولکولها در بخار بستگی دارد . هرچه تعداد مولکولها در حجم معینی از بخار زیادتر باشد ، تعداد مولکولهایی که به سطح مایع برخوردکرده و مجددا به فاز مایع تبدیل می شود ، بیشتر خواهد بود .
در ابتدا چون تعداد کمی از مولکولها در بخار وجود دارند ، سرعت تبدیل آنها به مایع کم‌است اما با افزایش غلظت بخارسرعت مایع شدن افزایش می یابد تا اینکه بخار شدن به جایی‌می رسد که سرعت بخار شدن مولکولها با سرعت مایع شدن آنها برابر شود . این حالت را تعادل بین دو فاز مایع و بخار گویند . چون در حالت تعادل ، غلظت مولکول ‌ها در فاز بخار ثابت است، فشار بخار نیز ثابت است . فشار هر بخار در حالت تعادل با مایع خود در دمای
معین را فشار بخار آن مایع می نامیم . فشار بخار تابع دماست و با افزایش آن زیاد می شود .
بعضی اوقات که فشار مکش مطلق به اندازه کافی بالا نباشد ، مایع یا سیال در مکش (ورودی ) پمپ تبخیر می‌گردد . برای اینکه بدانیم چرا این اتفاق می افتد ،باید بدانیم که چه سیالاتی بخار می گردند یا اینکه چه موقع بخار می‌گردند.
حرارت شکلی از انرژی است که باعث افزایش انرژی سیال می شود که به شکل بخار شدن و افزایش فشار نمایان می شود . فشار بخار باعث می شود که مایع بخار گردد .فشار بخار بالاتر ، سرعت تبخیر مایع را افزایش می‌دهد.
یک مایع با فشار بخار بالاتر ، حرارت کمتری برای بخار شدن نیاز دارد . همچنین فشاری توسط گازها و بخارات روی سطح مایع به آن وارد می‌گردد. فشار روی مایع تمایل به جلوگیری از فرار و آزاد شدن بخارات مایع دارد.
بنابراین برای محافظت و جلوگیری از بخارشدن مایع در پمپ ، فشارمکش مطلق باید بالاتر از فشار بخار مایع در آن دما باشد.
اصطکاک ( سایش ) افت فشار از اصطکاک ناشی می شود و در واقع نوعی تبدیل انرژی می‌باشد . اصطکاک یک نیروی مقاوم برای جریان سیال است . برای حرکت سیال ، نیروی پیشران باید بزرگتر از نیروی مقاوم باشد . در اصطلاح فنی گفته می شود که افت فشار باید بزرگتر از مقدار اصطکاک باشد.
یک لوله باقطرکوچکتر مقاومت بیشتری در مقابل جریان نسبت به یک لوله با قطر بزرگتر ایجاد می‌کند . زمانی که مقدار جریان در یک پمپ بیشتر شود ، اصطکاک نیز افزایش می یابد. افزایش مقدار جریان ، فشار مکش ( ورودی ) قابل دسترسی را کاهش می‌دهد .
با افزایش مقاومت در برابر جریان در ورودی ( مکش ) پمپ ، مایع ممکن است بخار شود.
بنابراین با افزایش مقدار جریان ، اصطکاک افزایش و فشار مکش کاهش می یابد و احتمال بخار شدن سیال در ورودی بیشتر می شود ، پس در کاربرد لوله ورودی باید به این موضوع توجه داشت .
- اجزا اصلی و ساختمان مکانیکی :
هر پمپ گریز از مرکز دارای سه بخش اصلی زیر است که هرکدام از آنها از اجزای مختلفی تشکیل شده است :
1) محرک
2) محفظه آب بندی
3 ) پوسته
محرک: در پمپ های دوار معمولا از سه نوع محرک الکترومغناطیسی ( الکتروموتور ) ، دیزلی وتوربینی استفاده می شود . محرک الکترو مغناطیسی یک ژنراتور بوده که انرژی الکتریکی را به حرکت دورانی تبدیل می کند . محرک توربینی به کمک انرژی بخار آب ؛ محور پمپ را می چرخاند .
محرک دیزکی نیز موتوری است که با سوخت فسیلی معمولا گازوئیل کار می‌کند.
خروجی محرک به کمک کوپلینگ به میل محور پمپ متصل شده و این میل محور وارد محفظه آب بندی می شود . در این محفظه دو یاتاقان (ساچمه ای) قرار داشته که ‌درون روغن غوطه‌ور می‌باشند و حکم تکیه‌گاه های میل محور را دارند . انتهای میل محور به یک پروانه که درون پوسته جا دارد متصل شده است.
پوسته : که قسمت عمده آن پروانه و شافت است .
الف ) پروانه( Impeller) :
ایمپلرها با انواع مختلف یک دهنه ، دودهنه ، باز ، اصولا پروانه های دو دهنه دارای نیروی محوری(Trust) کمتر اما هزینه ساخت گرانتر می‌‌باشند . همچنین پروانه های باز و نیمه باز از نظر هزینه ساخت ارزانتر می‌باشند . مشخصه های مایع و وجود ذرات جامد ، روانی و ناروانی مایع و پارامترهایی ازاین قبیل درنوع استفاده‌ از ایمپلرموثرهستند . پروانه های باز درپمپ های محوری و بسته در پمپ های شعاعی بکار می روند . که برای نوع باز برای مایعات حاوی ذرات جامد و الیاف دار نوع بسته برای مایع‌ های تمیز و بدون ذرات شناور مناسب می باشند . نوعی از پروانه های باز نیز برای مخلوط مایع و جامد بکار می روند . بنابراین ساده ترین نوع پروانه ، پروانه باز بوده که برای انتقال مایعات حاوی ناخالصی جامد شناور بکار می رود . پروانه نیم باز نیز برای مایعات رسوب زا بکار برده می شود .کاربرد پروانه بسته نیز در ظرفیت های بالا و به دو دسته یک چشمی و دوچشمی تقسیم می شود .
تعریف پروانه نیز به عنوان بخشی اساسی ، قسمت متحرک پمپ است که مایع ورودی به‌ چشم را به علت داشتن حرکت دورانی به خارج میراند . لازم است که اشاره کنم هر چه اندازه ذرات شناور بیشتر باشد تعداد پره ها کمترخواهد بود .

دانلود کتاب مکانیک سیالات وایت ویرایش پنجم

دانلود کتاب مکانیک سیالات وایت ویرایش پنجم
کتاب مکانیک سیالات وایت به همراه مجموعه مکانیک سیالات شومز ونیز سیالات استریتر از جمله رفرنسهای بسیار معتبر دانشگاهی دراین زمینه میباشد
پنجمین ویرایش کتاب مکانیک سیالات وایت تقدیم شما
white-fluid mechanics
5th Edition

دانلود

کوپلینگ ها

 

کوپلینگ ها اجزایی از ماشین هستند که حرکت و توان را از انتهای یک محور دریافت و به محور دیگر منتقل می کنند. در کوپلینگ ها قطع ارتباط بین محور محرک و متحرک وجود ندارد. در یک دسته بندی کلی کوپلینگ ها به دو نوع صلب و انعطاف پذیر تقسیم بندی می شوند.

1- کوپلینگ های صلب (سخت)

این نوع کوپلینگ ها جهت اتصال دو محور کاملا هم راستا در تجهیزاتی که در آن ها هم محوری دقیق دو محور ضروری و قابل دسترس است استفاده می شود لازم به ذکر است که هر گونه عدم تقارن محوری در این نوع کوپلینگ ها خرابی های سریع را در اثر تشت های بالا به دنبال دارد این نوع از کوپلینگ ها به دو دسته تقسیم بندی می شوند:

1-1 کوپلینگ های پوسته ای

در این نوع کوپلینگها ، دو نصفه پوسته با فشار پیچها روی محور بسته شده و گشتاور چرخشی بوسیله اصطکاک به محور منتقل می گردد. هردو محور با خار انطباقی به پوسته متصل می شوند ، مونتاژ این کوپلینگها آسان است ولی فقط امکان انتقال قدرت بین دو محور هم قطر را میسر می سازد. این نوع کوپلینگ انتقال گشتاورهای کم را امکان پذیر می نماید.





2-1 کوپلینگ های فلنچی

سطح بیرونی بوش لغزشی مخروطی بوده و لذا در اثر محکم کردن پیچها اتصال فشاری و اصطکاک کافی بین فلنچ و بوش برقرار می گردد. دو محور در این اتصال بایستی کاملاً همراستا باشند ، مونتاژ و دمونتاژ این نوع کوپلینگ به آسانی انجام می شود.

2- کوپلینگ های انعطاف پذیر

کوپلینگ های انعطاف پذیر در انواع مختلف تجاری در دسترس هستند که هر یک برای شرایط کاری خاصی مناسب می باشند این نوع کوپلینگ ها می توانند عدم تقارن محوری شعاعی و زاویه ای را بین محور محرک و متحرک تحمل کنند.

کوپلینگهای انعطاف پذیر چهار وظیفه اصلی بر عهده دارند :

1- انتقال گشتاور و سرعت از محرک به متحرک

2- خنثی و مستهلک کردن ارتعاشات

3- جبران نامیزانیها

4- تاثیر بر فرکانس طبیعی سیستم

مقادیر ناهمراستایی مجاز کوپلینگها را باید از کاتالوگهای سرندگان بدست آورد ولی به طور کلی ناهمراستایی محوری مجاز در کوپلینگهای کوچک به in 005/0 و در کوپلینگهای بزرگ به in 03/0 محدود می باشد. حداکثر نامیزانی زاویه ای مجاز هم معمولاً در حدود در نظر گرفته می شود.

با توجه به طیف وسیعی از انواع کوپلینگ های انعطاف پذیر ، وجود یک دسته بندی جامع که بتواند تمام انواع را در برگیرد در دسترس نیست. لذا از دسته بندی انواع کوپلینگهای انعطاف پذیر صرف نظر می شود.

1-2 کوپلینگ توربوفلکس

این کوپلینگ از دو فلنچ و یک قطعه واسطه که اکثراً یک محور تو خالی می باشد تشکیل شده است. گشتاور چرخشی توسط واشر فنری منتقل می گردد و به کمک آن مقداری جابجایی محوری و زاویه ای میسر می شود. این نوع کوپلینگ توانایی تحمل نیروهای شعاعی زیاد ( مانند نیروهای اعمال شده به غلتکهای دستگاه نورد ) را دارا می باشد.

2-2 کوپلینگ شبکه ای ( فالک )

در این نوع کوپلینگ ، گشتاور از طریق یک فنر انعطاف پذیر به شیارهای فولادی روی کوپلینگ انتقال می یابدو بین دو نیمه کوپلینگ کمی فاصله وجود دارد که تا حدی نامیزانی محوری را جبران نموده و قابلیت تحمل بارهای ناگهانی سبک را بدلیل وجود فنریت پیچشی را بوجود می آورد. استفاده از محفظه و گریسکاری برای این کوپلینگ لازم است.

3-2 کوپلینگ های زنجیری

کوپلینگ زنجیری از دو چرخ زنجیر تشکیل شده است که توسط یک زنجیر دو ردیفه به یکدیگر متصل می گردند بدلیل وجود کمی لقی بین اجزاء رنجیر ، این نوع کوپلینگ مقادیر کم نامیزانی زاویه ای ، محوری و شعاعی را تحمل می کند. جهت طولانی شدن عمر کاری ، دندانه های چرخ زنجیرها سخت کاری می گردد.

کوپلینگ بایستی گریسکاری شده و درون یک محفظه بسته پر از گریس قرارداده شود.

4-2 کوپلینگ های چرخ دنده ای

کوپلینگ چرخ دنده ای از دو توپی متصل به چرخ دنده تشکیل شده که یک بوش هزار خاری آنها را به یکدیگر متصل می کند. بدلیل وجود لقی بین دنده ها و همچنین خاصیت عملکرد کشویی امکان جذب نامیزانی های دورانی ، زاویه ای و محوری و محوری را دارا می باشد. قابلیت انتقال توانهای زیاد در مقایسه با سایر انواع کوپلینگ ( به نسبت ابعاد و وزن ) از مشخصات کوپلینگ چرخ دنده ای است. مقدار نامیزانی مجاز و ظرفیت انتقال بار به شکل و لقی و زاویه فشار دنده ها بستگی دارد.

5-2 کوپلینگ فکی

کوپلینگ فکی یکی از متداولترین انواع کوپلینگهای انعطاف پذیر است که با استفاده از یک ضربه گیر الاستومری از انتقال ارتعاش و ضربه جلوگیری نموده و نامیزانیهای محور را جذب می نماید. این نوع کوپلینگ علیرغم حجم و ابعاد کم قابلیت انتقال توانهای بالا را دارا بوده و در طرحهای متنوع جهت کاربردهای عادی و اختصاصی استفاده می شود. مقدار سختی عضو الاستومری ، دمای کاری ، مقاومت شیمیایی و صلبیت پیچشی آن بسته به شرایط عملکرد تعیین می گردد.

معمولاً درجه حرارت کاری این نوع کوپلینگ در محدوده 40- تا 120 درجه سانتیگراد می باشد. توپی های کوپلینگهای فکی معمولاً از فولاد یا چدن ساخته می شوند.

6-2 کوپلینگ رولکس

اصلی ترین ویژگی این نوع کوپلینگ قابلیت انعطاف زیاد در جهت دورانی و جلوگیری از انتقال ضربه و ارتعاش می باشد.

7-2 آکارد ئونی

قابلیت تحمل نامیزانیهای زاویه ای و محوری و جذب ارتعاشات پیچشی مهمترین ویژگی این کوپلینگ است.

8-2 پارافلکس ( چرخی )

این نوع کوپلینگ ضمن تحمل ناهمراستایی محوری و زاویه ای قابلیت جذب ارتعاشات پیچشی را نیز دارا می باشد.

9-2 کوپلینگ متغیر زاویه ای ( یونیورسال)

کوپلینگهای انعطاف پذیر بسته به طرح و ساختمان داخلی می توانند ناهمراستایی زاویه ای را تا حدود 3 درجه و ناهمراستایی محوری را تا تحمل کنند. ولی در برخی از کاربردها لازم است که دو محور ناهمراستایی بیشتری داشته باشند. در این گونه کاربردها از چهارشاخه یا اتصال یونیورسال استفاده می شود. مفصلهای یونیورسال در سرعتهای بسیار پائین امکان کار تحت زاویه را نیز دارا هستند. ولی حداکثر زاویه قابل توصیه جهت سرعتهای بیشتر از rpm10 ، می باشد. در سرعتهای بالاتر از rpm600 این زاویه به حداکثر محدود می گردد.