وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک کتاب،مقالات،نرم افزار،آموزش نرم افزار،حلال،جزوات،فیلم،کاتالوگ،پروژه،مجلات،سایت،اخبار،استاندارد،هندبوک، مهندسی مکانیک ،مهندسی مکانیک،کارشناسی ارشد مهندسی مکانیک،دکترا مهندسی مکانیک،مهندسی مکانیک، تلگرام ، تلگرام

وبلاگ تخصصی مهندسی مکانیک

وبلاگ تخصصی مهندسی مکانیک کتاب،مقالات،نرم افزار،آموزش نرم افزار،حلال،جزوات،فیلم،کاتالوگ،پروژه،مجلات،سایت،اخبار،استاندارد،هندبوک، مهندسی مکانیک ،مهندسی مکانیک،کارشناسی ارشد مهندسی مکانیک،دکترا مهندسی مکانیک،مهندسی مکانیک، تلگرام ، تلگرام

مجموعه ی خورشیدی(مجموعه سیاره ای)ساده

دستگاه دنده خورشیدی:
یک مجموعه خورشیدی و یا سیاره ای مطابق شکل شامل یک دنده خورشیدی یا دنده مرکزی (زرد) که با دنده های هرز گرد سیاره ای یا پنیونها که روی محور نگهدارنده ان به طور یکپارچه روی قفسه یا حامل سیاره ای(سبز) قرار گرفته و قفسه هم در داخل دنده داخلی یا رینگی(ابی) احاطه شده است. تنش های محرک روی دندانه های زیادی وارد میشود و بنابراین بار متعادل میگردد درنتیجه این طرح دوام زیادتری پیدا میکند . دنده های خورشیدی نسبت به دنده های استاندارد میتوانند مقامتر باشندوگشتاورهای زیاد را انتقال نمایند.
عضوهای مجموعه خورشیدی (رینگی ،خورشیدی ،قفسه )در گیربکسهای اتوماتیک به وسیله ی کلاچ ها و باندهایی ثابت و یا محرک میشوند. در حالت کلی میتوان پنج حالت مختلف را در مجموعه مورد بررسی قرار داد.البته باید دانست که مجموعه نمیتواند پنج حالت را در گیربکس داشته باشد.در گیربکس ها برای ایجاد نسبت دنده ی مناسب از دو و یا سه مجموعه استفاده میکنند.
برای بررسی حالت ها باید به چند نکته توجه کرد
تعداد دنده های خورشیدی < تعداد دنده های رینگی < تعداد دنده های قفسه
اثبات این مساله باشد برای بعد
منظور از محرک ،عضوی است که گشتاور ورودی به ان وارد میشود و نیرو را به عضو متحرک منتقل میکند.
نسبت دنده برابر است با تعداد دنده های متحرک تقسیم بر تعداد دنده های محرک




حالت های مختلف موجود در دستگاه :

1. قانون خلاص : هیچ عضوی درگیر نمی باشد.

2. قانون مستقیم که کافی است دو عضو با هم یکپارچه شوند.

3. دنده عقب : در این حالت قفسه ثابت می شود و دو حالت خواهیم داشت که حالت مطلوب ان این است که خورشیدی محرک باشد و رینگی متحرک باشد. چون در این حالت افزایش گشتاور خواهیم داشت .حالت دوم افزایش نسبت دنده خواهیم داشت که برای دنده عقب مناسب نیست.

4. قانون دنده سنگین : که دو حالت دارد
( قفسه متحرک – رینگی محرک – خورشیدی ثابت )
( قفسه متحرک– رینگی ثابت – خورشیدی محرک )بیشترین افزایش گشتاور

5. قانون اور درایو:
(قفسه محرک – رینگی ثابت – خورشیدی متحرک )بیشترین افزایش نسبت دنده
( قفسه محرک – رینگی متحرک – خورشیدی ثابت )

بررسی انتقال قدرت در مجموعه خورشیدی
برای بررسی حالت ها باید ادراک خوبی داشت تا جهت دور اجزا را مجسم کرد. اگر ماکت این مجموعه را داشته باشید درک ان اسان تر خواهد بود .
برای هر دنده باید جهت دور خورشندی ،رینگی ، قفسه و پنیون ها را باید درنظر گرفت.
جهت چرخش رینگی و پنیون همواره موافق یکدیگرند به علت دنده داخلی بودن رینگی و جهت چرخش خورشیدی و پنیون مخالف یکدیگرند همانند دو چرخ دنده ی خارجی

بررسی یکی از حالت ها (قانون دنده سنگین )خورشیدی محرک - قفسه متحرک - رینگی ثابت
همانطور که مشاهده میکنید قدرت (دور) از خورشیدی که موافق عقربه های ساعت میچرخد به قفسه منتقل میشود ،چون رینگی ثابت است در نتیجه پنیون ها مخالف میچرخند. جهت چرخش قفسه (خروجی ) در جهت موافق خواهد بود چون راه گریزی ندارد.

مکانیزم شارژ فنری

در این مکانیزم,انرژی لازم برای عملکرد کلید انرژی ذخیره شده در فنر می باشد.سیستم بدین صورت است که برای هر بار بسته یا وصل شدن کلید نیاز به شارژ فنر مربوط به وصل می باشد پس از شارژ شدن این فنر امکان وصل کلید وجود خواهد داشت.با وصل کلید,با وصل کلید,بطور همزمان فنر دیگری شارژ می شود که مربوط به حالت قطع کلید می باشد و نتیجتا با هر بار وصل کلید,کلید آماده ی قطع است.ضمنا پس از وصل کلید, سوئیچ های حدی (LIMIT SWITCHES) فرمان لازم را به موتوری ارسال می کنند که وظیفه ی این موتور شارژ فنر مربوط به عملکرد وصل است و پس از شارژ این فنر توسط سوئیچ های دیگری فرمان قطع موتور مربوطه صادر می شود.
مطابق بررسی انجام شده توسط CIGRE هشتاد الی نود درصد خطاهای کلیدهای فشار قوی مربوط به خطاهای کانیکی آن ها است و لذا هر چه سیستم های مکانیکی ساده تر باشند این خطاها کاهش می یابد.مکانیزم فنری در مقایسه با مکانیزم های دیگر سادگی لارمه را دارا است,لذا هم اکنون به صورت گسترده ای مورد توجه می باشد.
مزایا:
ارزانی نسبی,سادگی نصب و نگهداری,امکان شارژ دستی فنر,قابلیت اطمینان بالاتر.
معایب:
محدود بودن میزان انرژی قابل ذخیره که در نتیجه بدون شارژ مجدد فنر وصل,این مکانیزم تنها یک سیکل قطع-وصل-قطع را می تواند انجام دهد و برای عمل قطع و وصل تکفاز نیاز به وجود سه مکانیزم می باشد.
مکانیزم هیدولیکی (HYDRAULIC MECHANISM):
مکانیزم هوای فشرده یا پنیوماتیکی (PENUMATIC MECHANISM):





مکانیزم هیدرولیکی :
در این مکانیزم از اختلاف فشار دو سیستم هیدرولیک,در داخل یک مجموعه پیوسته و جدا از محیط خارج استفاده می شود.در حالت قطع کلید دو شیر الکتریکی ON و OFF بسته هستند و روغن پرفشار که متصل به مخزن نیتروژن فشرده ای به عنوان منبع ذخیره ی انرژی است,کلید را در حالت باز نگه می دارد.
زمانی که تصمیم به وصل کلید گرفته شود,شیر الکتریکی OFF باز شده و نتیجتا روغن پرفشار به پیستون عملکرد فشار وارد می نماید و چون حجم پشت روغن پیستون بیش از حجم جلوی آن است پیستون حرکت کرده و کلید وصل می شود,منبع نیتروژن فشرده فشار مربوطه را علیرغم جابجایی حجم روغن تقریبا ثابت نگه می دارد.
در حالت وصل کامل کلید,در جلوی پیستون فشار حجم روغنی وجود نداشته و تنها روغن پرفشار پیشتون را در حالت بسته نگه می دارد.
زمانی تصمیم به قطع کلید می باشد,شیر ON بسته و شیر OFF باز می شود,نتیجتا روغن کم فشار جایگزین در پشت پیستون می گردد و چون جلوی پیستون متصل به سیستم پر فشار استنتیجتا پیستون به عقب رانده می شود و کلید قطع می گردد.منبع نیتروژن فشرده انرژی لازم برای چندین بار عمل قطع و وصل را در خود ذخیره دارد و لذا تنها بعد از چند بار عمل قطع و وصل (معمولا حداکثر تا پنج عمل قطع-وصل قطع) نیاز به عملکرد پمپ روغن است و نتیجتا انرژی لازم همواره در اختیار کلید می باشد.
فشارسنج های لازم جهت کنترل فشار روغن و نیتروژن در سیستم موجود هستند که آلارم های لازم را ارسال می کنند.
مزایا:
قابلیت ذخیره ی انرژی زیاد,سر و صدای کم هنگام قطع و وصل,کوچکی نسبی مکانیم
معایب:
گرانی نسبی,مشکل بودن نصب,تعمیر و نگهداری,نیاز به بازدیدهای دوره ای بیشتر,امکان وجود نشتی روغن و یا نیتروژن




مکانیزم هوای فشرده (PENUMATIC MECHANISM)
در این مکانیزم از هوای فشرده در مخزن خاصی ذخیره شده است به عنوان منبع انرژی عمل کننده استفاده می شود و پس از چند بار عملکرد کمپرسوری مجددا هوای فشرده را در منبع ذخیره می نماید لذا همواره کلید دارای انرژی لازم جهت قطع و وصل می باشد.معمولا دو سیستم,یکی بصورت کمپرسور جداگانه جهت هر کلید و دیگری بصورت کمپرسور مرکزی برای تمام کلید ها پست بکار می رود که البته امروز سیستم کمپرسور مرکزی به علت قابلیت اطمینان پایین آن به جهت وایسته شدن کل کلید ها به یک سیستم مرکزی کمتر مورد توجه است و سیستم کمپرسور جداگانه مد نظر می باشد.
فشار هوا توسط فشار سنج های خاصی کنترل می شوند که آلارم های لازم را ارسال می کنند.همچنین منبع یا مخزن هوای فشرده دارای شیر اطمینانی است که برای تخلیه ی هوای اضافه و جلوگیری از اضافه فشار در مخزن هوای فشرده بکار می رود.
مزایا:
دارا بودن انرژی ذخیره ی بالا
معایب:
مشکل بودن نسبی نصب,نیاز به بازدیدهای دوره ای بیشتر,صدای شدید در هنگام قطع و وصل,امکان وجود نشتی هوا از اتصالات لوله ها و شیرهای اطمینان,
البته هم اکنون نوع نسبتا جدیدی به عنوان مکانیزم فنری-هیدرولیکی(HYDRAULIC SPRING) توسط بعضی از سازندگان عرضه شده است که از نظر اصول تقریبا متشابه مکانیزم هیدرولیکی می باشد لکن به جای منبع فشار یا انرژی ذخیره ی نیتروژن در این سیستم از فنر استفاده شده است,لکن تجربیات کافی از این سیستم در دسترس نیست.
نتیجه گیری:
از نظر انرژی قابل دسترس برای کلید به ترتیب اولویت با مکانیزم های هوای فشرده,هیدرولیکی و فنری می باشد لذا مشاهده می شود که دو مکانیزم اول در سطح ولتاژی بالاتر که کلید ها حجم و ابعاد بیشتری دارند و سطح اتصال کوتاه نیز بالاتر است و الزاما نیازی به قدرت قطع بالاتری برای مکانیزم مطرح می شود,بیشتر مورد توجه هستند تا در سطوح ولتاژی پایین تر.
بطور کلی می توان گفت که تا سطح ولتاژی 145 کیلوولت تقریبا تمام سازندگان مکانیزم فنری را به لحاظ احتیاج سیستم به منبع انرژی قطع با قدرت کمتر وسادگی این مکانیزم و سهولت تعمیرات آن ترجیح داده اند,لکن در ولتاژهای بالاتر به جهت نیاز به منبع انرژی قطع با قدرت بالاتر,تعدادی از سازندگان مکانیزم هیدرولیکی یا هوای فشرده را مدنظر دارند ولی تعدادی نیز به جهت موارد عنوان شده در فوق و قابلیت اطمینان بالاتر,مکانیزم فنری را حتی برای این سطوح ولتاژ نیز ارجع دانسته و تامین می نمایند.


کرنش سنج

Strain Gauge

کرنش سنج های مقاومتی که ایده ی آنها بر اساس تغییر مقاومت بر اثر اعمال نیرو است ، در واقع لایه های بسیار نازکی از سیم های مقلومتی است. با اعمال نیرو، طول و سطح مقطع سیم تغییر می کند و این تغییرات با نیروی اعمالی رابطه دارند. به این ترتیب با اعمال نیرو و ایجاد این تغییرات، مقاومت کرنش سنج تغییر می کند ومقدار نیرو را از این طریق می توان بدست آورد. معمولا اثر این تغییر مقاومت را از طریق پل وتسون به ولتاژی برای اندازه گیری تبدیل می کنند. در زیر ساختار کلی سنسور و کاربرد آن را مشاهده می کنیم.








با استفاده از مدار زیر اثر دما بر اندازه گیری را می توان تا حد زیادی کاهش داد. به این صورت که یکی از دو کرنش سنج فقط در مقابل تغییر دما و دیگری هم در مقابل دما و هم نیرو واکنش نشان می دهد و با استفاده از تفاضل بین این دو می توان نیرو را با حذف اثر دما بدست آورد.

 
 
اجزاء یک کرنش سنج



تغییرات مقاومت کرنش سنج ها را به راحتی و با دقت زیاد می توان به کمک یک مدار پل وتستون)(Wheatstone Bridge با چهار کرنش سنج (مدار پل کامل)، سه کرنش سنج (مدار سه چهارم پل )، دو کرنش سنج (مدار نیم پل)، یا یک کرنش سنج (مدار یک چهارم پل) اندازه گیری کرد. حساسیت پل کامل چهار برابر بیشتر از پل یک چهارم پل است و بیشتر کاربرد دارد.







مدار پل وتستون

زمانی که کرنش سنج تحت تاثیر نیرو یا تنش قرار میگیرد، مقاومت آن تغییر کرده و پل از حالت تعادل خارج می شود. در این حالت خروجی پل متناسب با مقدار نیرو یا تنش وارده خواهد بود.

عوامل موثر در طراحی مکانیکی

در یک طراحی به این عوامل نیاز داریم :

اطلاعات : افزایش آن باعث بهتر شدن کار می شود.

دانش فنی: معلوماتی که شخص دارد و نتیجه ی تجارب است.

خلاقیت : برخواسته از ذوق و سلیقه

نظام ارزیابی : اولین گروه : خود گروه طراحی است که با تخمین می تواند طراحی خود را ارزیابی کند.

دومین گروه : سازمانها و ارگانهی بین المللی هستند که نظاطرت و ارزیابی می کنند.

سومین گروه: مشتری و مردم هستند که در نهایت عملکرد سازننده را ارزیابی می کنند.

برای طراحی یک محصول از سایر علوم مثل روانشناسی ، جغرافیا و... می توان استفاده کرد.

برای یک منطقه جغرافیایی خاص طراحی بستگی به شرایط اب و هوا و فرهنگ ان منطقه دارد.

خیلی از محصولات با اینکه جنبه ی استفاده عمومی دارند ، ولی قشری خاص از جامعه مثل مردان یا زنان به سمت آن کشیده می شوند ، یا حتی طیفی از مردان جوان به سمت آن کشیده می شوند که تماما به روانشناسی طراحی محصول دارد. مدلهای اسپرت خودرو برای جوانان یا رنگهایی شاد برای بانوان از نمونه های بارز آن هستند.

هیچ طرحی با یک تفکر بسته موفق نمی شود. و باید از تجارب سایر محصولات استفاده کرد*.

فاکتورهای طراحی:

1-مقاومت

2-قابلیت اطمینان

3-خواص حراراتی

4-خوردگی

5-سایش

6-سایش

7-اصطکاک

8-فرایند ساخت

9-کارایی

10-هزینه

11-وزن

12-عمر ودوام

13-صدا

14سبک وشیوه

15-انعطاف پذیری

16-شکل

17-اندازه

18-کنترل

19-سختی

20-پرداخت سطح

21-روانشناسی

22-تامین ونگهداری

23-حجم

24-تعهد و مسولیت

25-....

چرا ارتعاش در ماشین آلات و تجهیزات دوار وجود دارد؟

به طور کلی دو نوع نیروی استاتیکی و دینامیکی در ماشین آلات وجود دارد. نیروهای ارتعاش زا از نوع نیروهای دینامیکی هستند که بر اثر وجود کاستی هایی در ماشین ایجاد می شوند. برخی از زمینه های بروز کاستی (اختلاف از حالت ایده آل) عبارتند از:

- محدودیتهای طراحی
- محدودیتهای ساخت
- اشکال در نصب اولیه
- اشکالات بهره برداری
- بروز اشکالات در حین تعمیرات
- و ...

از آنجاییکه رسیدن به حالت ایده آل امکان پذیر نیست، همیشه تا حدی ارتعاش در ماشین آلات وجود دارد که مجاز شمرده می شود. اما با گذشت زمان و بر اثر بروز اشکالات بعدی، بعضاً ارتعاشات نسبت به حد مجاز افزایش می یابد که با آنالیز و انجام اقدام اصلاحی مناسب، می توان وضعیت را به حالت قبل برگرداند.

رابطه زیر میزان ارتعاش ماشین را تعیین می کند:


Vibration = Vibratory Force / Impedance

نیروهای ارتعاش زا در داخل ماشین و معمولاً در سیستم روتور (یعنی بخش در حال دوران) تولید می شوند. امپدانس از مشخصات هر سیستم مکانیکی و از جمله ماشین آلات دوار است و مسیر انتقال ارتعاش را توصیف می کند.
ارتعاشاتی که معمولاً از روی بخش ساکن (استاتور) ماشین آلات و به ویژه از روی هوزینگ بیرینگ اندازه گیری می شود، تحت تأثیر دو پارامتر فوق است.
اکنون دو پارامتر فوق (یعنی نیروهای ارتعاش زا و امپدانس) را جداگانه بررسی می کنیم.


نیروهای ارتعاش زا (Vibratory Forces)

برخی از عوامل ایجاد نیروهای ارتعاش زا در ماشین آلات، عبارتند از:

- میس الایمنت
- نامیزانی جرمی
- سایش اجزا و قطعات
- نیروهای آئرودینامیکی و هیدرودینامیکی
- نیروهای الکترومغناطیسی
- تماس قطعات متحرک و ثابت
- اصطکاک
- . . .

امپدانس (Impedance)
امپدانس و یا مقاومت مکانیکی در برابر حرکت، از خصوصیات هر سیستم مکانیکی است که سه مؤلفه دارد:
1- جرم 2- سفتی 3- میرایی (دمپینگ)

برخی عوامل بدون اینکه از خود نیرویی تولید کنند و تنها از طریق تاثیر بر امپدانس، منجر به تشدید ارتعاش می شوند. مهمترین آنها عبارتند از:

- لقی مکانیکی
- تحریک فرکانسهای طبیعی اجزاء (رزونانس)
- ضعف در فونداسیون و یا شاسی ماشین آلات
- ضعیف بودن سازه (استراکچر)
- . . .

ارتعاشات به عنوان مشخص کننده وضعیت تجهیز

ارتعاشات هر تجهیز دوار (چه از نظر مقدار و چه از نظر سایر مشخصات ارتعاشات) ارتباط مستقیمی با وضعیت آن دارد و هرگونه تغییر هر چند جزئی در وضعیت تجهیز (از هر نظر) با تغییر در وضعیت ارتعاشات آن همراه خواهد بود.

منظور از تغییر در وضعیت تجهیز چیست؟

- تغییر در شرایط بهره برداری تجهیز
- بروز اشکال (مکانیکی، الکتریکی، . . . ) در تجهیز
- تغییر بار وارد بر تجهیز
- . . .

لذا اندازه گیری و آنالیز ارتعاشات یکی از تکنیکهای اصلی برای مانیتورینگ تجهیزات و ماشین آلات دوار به شمار می رود.


برخی عیوب قابل شناسایی از طریق ارتعاشات



برخی از عیوبی که به کمک ارتعاشات شناسایی می شوند:
  1. نامیزانی جرمی
  2. میس الایمنت
  3. رزونانس
  4. لقی مکانیکی
  5. خرابی بیرینگ
  6. خرابی چرخ دنده
  7. خارج از مرکزی
  8. شفت خمیده
  9. فونداسیون معیوب
  10. اشکالات الکتریکی
  11. اشکالات آئرودینامیکی و هیدرودینامیکی
  12. خرابی کوپلینگ
  13. خرابی تسمه و پولی
  14. اشکالات پایپینگ
  15. اعوجاج پوسته
  16. و . . .


نکته مهم و کلیدی در عیب یابی از طریق آنالیز ارتعاشات این است که:

هر عیبی در تجهیزات دوار، ارتعاشاتی با مشخصات خاص خود (از لحاظ دامنه، فرکانس، فاز و ...) ایجاد می نماید

تغییر شکل فلزات

فلز ماده‌ای است که می‌توان آن را صیقل داده و براق کرد، یا به طرح‌های گوناگون در آورد و از آن مفتول‌های سیمی ظریف تهیه کرد. فلز جسمی است که آزمایش‌های مربوط به گرما و مهم‌تر از همه جریان الکتریکی را به خوبی هدایت می‌کند. فلزات با یکدیگر فرق زیادی دارند، از جمله در رنگ و سختی و نرمی، تعدادی از آنها ممکن است به آسانی خم شده و یا خیلی محکم و مقاوم باشند

شکل واقعی فلزات
شکل واقعی فلزات به اندازه یون و تعداد الکترون‌هایی که هر یون در حوزه اشتراکی دارد و انرژی یون‌ها و الکترون‌ها بستگی دارد. هر قدر فلز گرمتر شود این انرژی زیادتر خواهد شد. پس فلزات گوناگون ممکن است طرح‌های گوناگونی به خود بگیرند. یک فلز ممکن است در حرارت‌های مختلف، طرح‌های متنوعی را اختیار کند، اما در بیشتر آرایش‌ها، یون‌ها کاملاً پهلوی هم قرار دارند، و معمولاً تراکم در فلزات زیادتر از دیگر مواد است. اختلافات عمده فلزات و دیگر جامدات و مایعات.فلزات هادی خوب برق هستند. چون الکترون‌های آنها برای حرکت مانعی ندارند. همه فلزات جامد و مایع گروهی الکترون آزاد دارند، طبعا همه فلزات هادی‌های خوب الکتریسیته هستند. به این سبب فلزات از دیگر گروه‌های عناصر، کاملاً متفاوت دارد.
اختلاف عمده فلزات و دیگر جامدات و مایعات، در توانایی هدایت گرما و الکتریسیته است. هادی خوب آزمایش‌های مربوط به گرما جسمی است که ذرات آن طوری تنظیم شوند که بتوانند آزادانه نوسان یافته و به ذرات مجاور خود نیز امکان نوسان آزاد را بدهند. "گرم شدن" همان نوسانات سریع یون‌ها و الکترون‌ها است. در فلزات چون گروه الکترون‌ها، غبار مانند یون‌ها را احاطه می‌کنند، طبعا هادی‌های خوبی برای حرارت هستند «رسانش گرمایی فلزات).

مقاومت مکانیکی فلز
مقصود آن مقدار باری است که فلز می‌تواند تحمل کرده، نشکند. بسیاری از فلزات، وقتی گرم هستند، اگر تحت فشار قرار گیرند، شکل خود را زیادتر از موقعی که سرد هستند، تغییر می‌دهند. بسیاری از فلزات در زیر فشار متغییر مانند نوسانات، آسانتر از موقعی که سنگین باری را تحمل می‌کنند، می‌شکنند.

علت درخشش فلزات
دلیل اول آن است که با طرح ریزی و براق کردن صحیح می‌توان فلزات را به شکل خیلی صاف تهیه کرد. گر چه آنها نیز تصاویر را خوب منعکس می‌کنند، ولی ظاهر سفید و درخشان بیشتر قطعات فلزی صیقلی شده را ندارند. بطور کلی جلا و درخشندگی فلز بستگی دارد به گروه الکترون‌های آن دارد.الکترون‌ها می‌توانند هر نوع انرژی را که به روی فلزات می‌افتد جذب کنند؛ زیرا در حرکت آزاد هستند. بیشتر انرژی الکترون‌ها از تابش نوری است که به آنها می‌افتد، خواه نور آفتاب باشد یا نور برق. اکثر فلزات همه انرژی جذب شده را پس می‌دهند، به همین دلیل، نه تنها درخشان بلکه سفید به نظر می‌آیند.

علت تغییر شکل فلزات
بسیاری از فلزات در حرارت ویژه‌ای، آرایش یون‌های خود را تغییر می‌دهند. با تغییر ترتیب آرایش یون‌های بسیاری از خصوصیات دیگر فلز نیز دگرگون می‌شود و ممکن است فلز کم و بیش شکننده، قردار، بادوام و قابل انحنا شود یا اینکه انجام کار با آن آسان گردد. بسیاری از فلزات در هنگام سرد بودن، به سختی تغییر شکل می‌پذیرند. بیشتر فلزات جامد را به زحمت می‌توان در اثر کوبیدن به صورت ورقه و مفتو‌ل‌های سیم در آورده، ولی اگر فلز گرم شود، انجام هر دو آسان است.

بسیاری از قطعات آلومینیمی به همان روش و با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است آولومینم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند.

آلومینم دارای فنریت زیادی است وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد.اغلب عملیات شکل دادن آلومینیم در حالت سرد انجام می گیرد زیرا وقتی پوفیلی با رویه نازک و روق های نازک حرادت داده می شوند امکان تاب خوردن آنها وجود دارد نیروی لازم برای تغییر شکل آلومینیم کمتر از فولاد است نرمی آلومینیم به خود ماده ( نوع آلیاژ ) و حالت آن بستگی دارد وضعیت آلومینیم مانند هر فلز دیگری در اثر کار سرد تغییر می کند تاثیر کار سرد بر آلومینم از این قرار است ماده مستحکم تر و سخت تر می شود در قطعه تنش تولید می شود اگر تغییر شکل از ظرفیت تغییر شکل پذیری فلز بیشتر شود کار سرد مممکن است باعث ترک خوردن آن شود راحت ترین ماده آلومینیمی از نظر تغییر شکل و نرمی آلویمینم حالص آلومینیم تصفیه شده و آلیاژ Al-Mn در حالت نرم است.

آلومینیم خالص و آلیاژهای آلومینیم در حالت نیمه سخت و آلیاژهای پیر سختی پذیر در حالت نرم در حال کار پذیر هستند گر چه کارپذیری آن ها کمتر از موادبیشتر شاد شده است آلیاژ های آلومینیم در حالت سخت یا حالات کاملا پیر سهت شده به مقدار کمی کار پذیرند و به طور کلی کارپذیری آنها بسیار مشکل است.آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود.

آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند. آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند .

آلیاژ ها از آلومینیم شامل عنصر لیتیم تولید شده اند که اهمیت ویژه ای در صنایع هوا – فضا یافته اند چگالی لیتیم 534% است نتیجتا چگالی آلیاژ های Al-Liمی تواند حدود 10 درصد کمتر از دیگر آلیاژ های متداول آلویمنیم باشد این وزن کم می تواند باعث استخکام ویژه بسیار خوب این آلیاژ برای کاربرد های هوا – فضایی باشد آهنگ رشد ترک خستگی در این آلیاژها پایین است که باعث بهبود مقاومت خستگی و سفتی ( تافنس ) خوب آن آلیاژ ها در دماهای پایین می شود آلیاژ های Al-Liدر ساخت کف بدنه و اکلت هواپیما های نظامی و تجاری به کار می روند استکام بالای آلیاژهای Al-Li ناشی از قابلیت آن ها برای پیر سختی است مهمترین زمینه های کاربرد آلومینم در صنایع عبارتند از :1- مصارف خانگی نظیر ظروف 2- مصارف ساختمانی نظیر در و پنجره 3- مصارف تاسیساتی نظیر لوله و اتصالات 4- مصارف صنایع فضایی5- مصارف اتومبیل سازی 6- مصارف کشتی سازی بدنه پروانه پمپ 7- مصارف تجاری و بسته بندی چای مواد لبنی ضخامت تا 10 میکرون 8- مصارف الکتریکی : نظیر کابل ها .
بسیاری از قطعات آلومینیمی به همان روشو با استفاده از همان دستگاه هایی شکل داده می شوند که برای شکل دادن فلزاتی چون فولاد ، مس و غیره به کار می رود اما در شکل دادن آلومینیم و آلیاژهیا آن برای دستیابی به شکل مورد نظر باید چندین مطلب مهم را در نظر گرفت از میان خواص مشخص آلومینیم می توان خواص زیر را نامب رد آلومینم سطحی نرمتر از فولاد دارد آلومینیم در مقابل شیار ( شکاف ) حساس است.
آلومینیوم اگر تحت خمش قرار بگیرد تمایل قابل توجه ای در بر گشتنب ه حالت اولیه خود دارد ( فنریت بالا)آلومینیم ضریب انتساط حرارتی و قابلیت حدایت حرارتی زیادی دارد سطح آلومینم به آسانی آسیب می بیند بنابراین تولیدات نیمه تمام و قطعات تمام شده آلومینیم باید در موقع جابه جایی کل شود و از اکسیژن یا شراندن آن بر روی میز کار و کف زمین پرهیز کرد از آلودگی سطح فلزی آلومینیم با ذرات فلزات سنگین باید پرهیز شود زیرا در صورت وجود رطوبت به خودگی آلومینیم کمک می کند آلومینم دارای فنریت زیادی است.

وقتی آلومینیم خم یا تا شود قابلیت انعطاف ( فنریت ) خیره کننده در مقایسه با قابیت انعطاف ( فنریت ) فولاد معمولی از خود نشان می دهد هر چه آلیاژ سخت تر باشد فنریت آن بیشتر است برگشت پذیری را می توان با خم کردن بیش از اندازه جبران کرد ولی مقدار صحیح و مطلوب آن برای کار مورد نظر را باید از طریق آزمایش و خظا تعیین کرد فنریت زیاد آلومینم در مقایسه با فولاد هب علت مدول الاستیکی نسبتا پایین آن است بیش از حد گرم کردن ماده آلومینیمی در دماهای غیر مجاز حتی به مدت بسیار کوتاه آسیب جبران ناپذیریبه فلز می رساند آن قدر که بریا برازندگی آن با کار باید آن را دوباره ذوب کرد بنابر این در کلیه عملیات کار گرم باید دقت دما را کنترل کرد .

انواع تغییر شکل:

بررسی مکانیزمهای ایجاد ترک و مکانیزمهای متفاوت رشد سریع یا در حد بحرانی ترک و رشد آرام و پایینتر از رشد بحرانی از اهمیت ویژه صنعتی برخوردارند. بررسی فعل و انفعالات فیزیکی که به هنگام شکست روی میدهد چندان ساده نیست، زیرا چگونگی ایجاد ترک و رشد آن و بالاخره نوع شکست در مواد کریستالی به جنس، ساختار شبکه کریستالی، ریزساختار و از آنجا که قطعات معمولا به طور کامل سالم و بدون عیب نیستند به نوع، اندازه و موقعیت عیب، نوع و حالت تنش وارد بر آنها بستگی خواهد داشت. معمولا شکست درفلزات به شکست نرم و شکست ترد تقسیم می شود.در صنعت هدف، کنترل و به تعویق انداختن شکست است.

شکست نرم:
بسیاری از فلزات و آلیاژهای آنها، به ویژه آنهایی که دارای شبکه fcc هستند، مانند آلومینیوم و آلیاژهای آن، در تمام درجه حرارتها، شکست نرم خواهند داشت. شکست نرم به آرامی و پس از تغییر شکل پلاستیکی زیاد به ازای تنشی بالاتر از استحکام کششی ظاهر میشود. از مشخصات شکست نرم، تحت تاثیر تنش کششی، ظاهر گشتن گلویی یا نازکی موضعی و ایجاد حفره های بسیار ریز در درون قسمت گلویی و اتصال آنها به یکدیگر تا رسیدن به حد یک ترک ریز و رشد آرام ترک تا حد پارگی یا شکست نهایی است

مراحل مختلف شکست نرم در یک فلز انعطاف پذیر

در این نوع شکست علت ایجاد حفرهای ریز در محدوده گلویی میتواند تغییر شکل غیر یکنواخت ناشی از ناخالصیهای موجود در ماده اصلی زمینه باشد. لذا با ایجاد حفره های بسیار ریز در محدوده گلویی حالت تنش سه محوری برقرار میشود که منجر به ایجاد ترک میشود .
در طراحی و ساخت اجزای ماشین آلات و در ساختمان سازی، تنشهای وارد بر سازه های فلزی در محدوده الاستیکی انتخاب میشود. بنابراین در کاربرد صنعتی، شکست در حالت تنش استاتیکی در مواد انعطاف پذیر ( داکتیل ) یک پیشامد نامطلوب است.

ترک داخلی در نا حیه نازک شده در نمونه کششی مس با خلوص بالا

شکست ترد:
شکست ترد معمولا در فلزاتی با ساختار کریستالی مکعب مرکزدار(bcc ) و هگزاگونال متراکم (hcp) و آلیاژهای آنها در درجه حرارتهای پایین ( معمولا پایینتر از دمای معمولی محیط ) و سرعتهای تغییر شکل بالا بطور ناگهانی ظاهر میشود. شکست ترد در امتداد صفحه کریستالی معینی، به نام صفحه کلیواژ، انجام میگیرد. در شکست ترد عموما تغییر شکل پلاستیکی قابل توجهی در منطقه شکست مشاهده نمیشود.نظریه شکست ابتدا علت شکست را این چنین بیان کرد که تمام پیوندهای اتمی در امتداد صفحه شکست هم زمان با هم گسیخته میشوند. بدین ترتیب که با ازدیاد تنش فاصله اتمها از یکدیگر دور میشوند ودر نهایت به محض اینکه تنش به حد تنش شکست ( تنش بحرانی ) رسید، در نتیجه گسستن تمامی پیوندهای اتمی در صفحه عمود بر امتداد کشش، شکست پدیدار میشود.در جدول زیر تنشهای بحرانی عمود بر صفحات کریستالی معین در چند تک کریستال برای شکست داده شده است.

شکست ترد وتعدادی از تک کریستالها

عملا تنش لازم برای شکست مواد لازم فلزی به اندازه قابل توجهی کمتراز تنش شکست محا سبه شده ا ز طریق تئوری است . بنابراین فعل وانفعال شکست نمیتواند از طریق گسستن همزمان تمامی پیوند های اتمی درامتداد سطح شکست صورت گیرد. بد ین ترتیب فعل و انفعالات شکست عملا بیشتر از طریق ایجاد یک ترک بسیار ریز به عنوان منشا ترک و رشد و پیشروی آن انجام میگیرد . برای پیشروی ترک د ر یک ماده لازم است مقدار تنش متمرکز در نوک ترک از استحکام کششی در آن موضع فراتر رود . د ر مواردی که شرایط برای پیشروی منشا ترک مساعد نیست ترک می تواند متوقف گشته وشکست پدیدار نشود.


تئوری گریفیت:
او چنین بیان می کند که در ماده ای که حاوی تعدادی ترک بسیار ریز باطول معینی است ، همین که مقدار تنش متمرکز درنوک ترک ، حداقل به مقدار تنش لازم برای گسستن پیوندهای اتمی د رآن موضع ( استحکام کششی ) رسید، شکست ظاهر میشود . باپیشرفت ترک ، سطح ترک افزایش می یابد . این مطلب بدین معنی است که برای ایجاد این سطح باید انرژی به کار برده شود . این مقدار انرژی از انرژی تغییر شکل کسب می شود.
بنابراین فرضیه گریفیت علت پدیدار گشتن شکست ترد را وجود ترکها و خراشهای سطحی بسیار ریز ( با اندازه بحرانی) و پائین بودن استحکام را د رآن مواضع می داند . اماموادب هم وجود دارد که بد ون داشتن ترکهای سطحی بسیار ریز شکست ترد د ر آنها پدیدار می شود . بنابراین د ر این گونه مواد هم باید فعل وانفعالاتی صورت گیرد که موجب به وجود آمدن تمرکز تنش وفراتر رفتن موضعی مقدارتنش از استحکام کششی ود رنتیجه ایجاد منشا ترک شود. زنر و اشترو مکانیزم این فعل و انفعال راچنین بیان داشتند که در حین تغییر شکل پلا ستیکی نابجاییها در پشت موانع ( مانند مرزدانه ها ومرز مشترک د و قلوییها ) تجمع یافته وبدین ترتیب در زیر نیم صفحه های مربوط به این نابجاییها ترکهای بسیار ریزی ایجاد می شود .
این ترکهای بسیار ریزهمچنین می تواند محلهای مناسبی برای نفوذ عناصری مانند اکسیژن ، ازت وکربن درآنها وایجاد فازهای ثانوی ترد ودر نتیجه شکست ترد باشند. چنین رفتار ترد د ر شکست ترد مس باوجود عناصری مانند آنتیموان وآهن همراه بااکسیژن مشاهده شده است .

مکانیزم ایجاد ترک از طریق نابجاییها

الف) تجمع نابجائیها در پشت مرز دانه ها (Zener)
ب) تلاقی نابجائیها (Cottrell)

کاترل مکانیزم د ومی رابرای ایجاد منشا ترک ارائه کرد. بد ین صورت که منشا ترکهای ریز می تواند د ر اثر تلا قی د و صفحه لغزش بایکد یگر ، د ر نتیجه د ر هم آمیختن نابجاییها د ر محل تلا قی آن د و صفحه و ایجاد نابجاییها ی جد ید ، ناشی شود، این مکانیز م می تواند د لیلی برای ایجاد سطح شکست ( صفحه کلیواژ ) مشاهده شده د ر صفحه (001 ) د ر فلزات باساختار کریستالی مکعب مرکزدار (bcc ) باشد.
درفلزات چندین کریستالی شکست تر د میتواند به صورت برون دانه ای ( بین دانه ای) و یا درون دانه ای باشد.شکست برون دانه ای در بین دانه ها د ر امتداد مرز دانه ها ظاهر می شود. د لیل این نوع شکست بیشتر میتواند وجود ناخالصیها یا جدایش و رسوب عناصر یا فازهای ترد و شکننده د ر امتداد مرز دانه ها باشد. شکست ترد درفلزات بیشتر به صورت درون دانه ای است . بدین ترتیب که ترک د ر داخل دانه ها گسترش می یابد. د رجه حرارت و سرعت تغییر شکل تاثیر مخالفی برروی نوع شکست خواهد داشت ، به طوری که باکاهش درجه حرارت و ازد یاد سرعت تغییر شکل ، تمایل برای شکست ترد به صورت درون دانه ای د ر حین خزش د ر نتیجه تغییرات شیمیائی دراثر اکسیداسیون ممکن خواهد بود. چنانچه اکسیداسیون برون دانه ای در فلزات صورت گیرد، تنش شکست بسیار کاهش می یابد.

تافنس شکست:
چنانچه در جسمی ترک وجود داشته باشد، د راین صورت استحکام آن جسم استحکامی نیست که از طریق آزمایش کشش به دست می آید ، بلکه آن کمتر است. د راین صورت مسئله ترک واشاعه آن اهمیت پیدا می کند. در اینجا تافنس شکست به رفتار مکانیکی اجسام ، شامل ترک یاد یگر عیوب بسیار ریز سطحی یاداخلی مربوط میشود. البته م یتوان اذعان کرد که عموما تمام اجسام عاری از عیب نبوده و شامل عیوبی هستند . دراین صورت آن چه که د رطراحی و اتنخاب مواد برای ما اهمیت صنعتی ویژه ای دارد ، مشخص کردن حد اکثر تش قابل تحمل برای جسمی است که شامل عیبی با شکل و اندازه معینی است . بنابراین به کمک تافنس شکست می توان توانایی جسمی که بطور کامل سالم نیست راد رمقابل یک بار خارجی وارد برجسم سنجید.معمولابرای تعیین تافنس شکست از آزمایش کشش برروی نمونه آماده شده ای از جنس معین که ترکی بطول وشکل معینی برطبق استاندارد درسطح یاداخل نمونه بطورعمد ایجاد شده استفاده می شود، شکل نمونه به گونه ای د ر دستگاه آزمایش کشش قرار می گیرد که ترک ریز به صورت عمود برامتداد تنش کششی قرار گیرد.

اکنون این سئوال مطرح می شود که به ازای چه مقداری از تنش s جوانه ترک مصنوعی د ر داخل جسم گسترش می یابد تاحدی که منجر به شکست نمونه شود . در اطراف این ترک تنش به صورت پیچیده ای توزیع می شود. حداکثر تنش کششی ایجاد شده د ر راس ترک بزرگتر از خارجیs است و تنش بحرانی ( sc ) نامیده میشود.تا زمانی که sc کوچکتراز استحکام کششی است نمونه نمی شکند .با وارد آمدن تنش به نمونه د ر محدوده الاستیکی ابتدا انرژی پتانسیل در نمونه ذ خیره می شود . موقعی که ترک شروع به رشد می کند بین مقدارکاهش انرژی پتانسیل ذخیره شده د رنمونه وانرژی سطحی ناشی از رشد ترک تعادل برقرار است . تازمانی رشد ترک ادامه پیدا می کند که از انرژی الاستیکی کاسته و به انرژی سطحی افزوده شود، یعنی تالحظه ای که شکست ظاهر گرد د .ابتدا گریفیث با توجه به روابط مربوط به انرژی پتانسیل ذ خیره شده و انرژی سطحی ترک در ماده الاستیکی ،مانند شیشه و تغییر و تبد یل آنها به یک د یگررابطه زیر را ارائه کرد:
s=√2Egs ∕ pa

این رابطه برای حالت تنش د و بعدی برقرار است . gs د ر این رابطه انرژی سطحی ویژه و E مد ول الاستیکی ماده است .برای حالت تغییر شکل د و بعدی ( حالت تنش سه بعدی باصرفنظر از تغییر شکل د ربعد سوم ) رابطه زیر را ارائه کرد:

(s = √ 2Egs ∕ pa(1_ n²


لازم به تذکر است که رابطه گریفیث برای یک ماده الاستیکی شامل ترک بسیار ریز باراس ترک تیز ارائه شد و این رابطه ترک باشعاع راس ترک 0≠r را شامل نمی شو د . بنابراین رابطه گریفیث شرط لازم برای تخریب است ، اما شرط کافی نیست .
در رابطه گریفیث انرژی تغییر شکل پلاستیکی در نظر گرفته نشده است . ازاین ر و اروان انرژی تغییر شکل پلاستیکی ، که برای فلزات و پلیمرها در فرآیند شکست قابل توجه است رادر نظر گرفت و رابطه زیر راارائه کرد:

s = √ 2E(gs+gp) ∕ pa

سپس اروین رابطه گریفیث را برای موادی که قابلیت تغییر شکل پلاستیکی دارند ، به کار برد و باتوجه به میزان رها شدن انرژی تغییر شکل الاستیکی در واحد طول ترک د رحین رشد (G) رابطه زیر را برای حالت تنش د و بعدی ارائه داد :

s = √ EG ∕ pa

بامقایسه با رابطه قبل (gs+gp) 2 = s است . بد ین ترتیب د ر لحظه ناپایداری ، وقتی میزان رها شد ن انزژی تغییر شکل الاستیکی به یک مقدار بحرانی رسید ، شکست پدیدار می شود. در این صورت در لحظه شکست :
برای حالت تنش دو بعدی Gc=pasc²∕E
برای حالت کرنش دو بعدیGc= pa(1- n² ) sc² ∕ E = Kc² ∕ E

Gcمقیاسی برای تافنس شکست یک ماده بوده و مقدار آن برای هر ماده ای ثابت و معین است . بامعلوم بودن این کمیت می توان مشخص کرد که مقدارa به چه اندازه ای باید برسد تاجسم بشکند . بدین ترتیب این رابطه در مکانیزم شکست اهمیت دارد. هرچقدر Gcکوچکتر باشد ، تافنس کمتر یا به عبارتی ماده تردتراست .رابطه زیر را برای حالت تنش دو بعدی می توان به صورت زیر نوشت :

Gc = √ EGc ∕ pa

و برای شرایط تغییر شکل نسبی د و بعدی رابطه زیر ارائه شده است :

(s = √ EGc ∕ pa(1_n²

تعیین تنش شکست بحرانی sc کار چندان ساده ای نیست . اما می توان گفت که به ازای تنشهای جسم باوجود ترک هنوز نمی شکند . از این رو تنش درحد پاینتر از مقدار بحرانی با ضریب شدت تنش K توصیف و رابطه زیر برای آن ارائه شد ه است :

K= fs√ pa

در این رابطه f ضریب هند سه نمونه معیوب ، s تنش اعمالی وa اندازه عیب است ، در شکل تئوری گریفیث اگر عرض نمونه نامحدود فرض شود ، دراین صورت 1 = f است . با انجام آزمایش روی نمونه ای با اندازه معینی از عیب می توان مقدار k ، که به ازای آن ترک شروع به رشد کرده و موجب شکست میشود ، را تعیین کرد . این ضریب شدت تنش بحرانی به عنوان تافنس شکست نامیده میشود و به Kc نشان داده میشود .اماازطرفی ، همچنین به ازای تنش ثابتی درحد کوچکتر از استحکام کششی باافزایش کند ترک ، طول ترک (a) میتواند به مقدار بحرانی برسد و به ازای آن نمونه تخریب شود.

تافنس شکست (Kc) از فولادی با تنش تسلیم MN.m2 2070 با افزایش ضخامت تا تافنس شکست در حالت تغییر شکل صفحه ای (دو بعدی) کاهش می یابد.

کمیتهای Kcو Gc بستگی به ضخامت نمونه دارد. همین که ضخامت نمونه افزایش یافت ، تافنس شکست Kcتا مقدار ثابتی کاهش می یابد ، این مقدار ثابت Kc تافنس شکست تغییر شکل نسبی دو بعدی KIc نامیده می شود . Kc کمیتی مستقل از اندازه نمونه است و در محاسبه استحکام که مستلزم اطمینان بالاست ، به کار میرود .

بنابراین در طراحی در محاسبات باید روابط زیر توجه شود :
s< Kc ∕ √ pa

و در حالت تغییر شکل دو بعدی ( حالت تنش سه بعدی باناچیز بودن تغییر شکل در بعد سوم):
s< K1c ∕ √ pa

کمیتهای K1c و G1c نه فقط برای گسترش ترک ترد ونرم تعریف شد ه است ، بلکه همچنین برای شکست تحت شرایط تنش خوردگی ، خستگی و خزش نیز به کار میرود. در جداول زیر تافنس شکست تعدادی از مواد ارائه شده است .

تافنس شکست تعدادی از مواد طراحی

تافنس شکست در حالت تغییر طول نسبی دومحوری (KIc) تعدادی از مواد

اگر حد اکثر اندازه عیب موجود در قطعه a و مقدار تنش وارد برآن s باشد ، میتوان ماده ای را باتافنس شکست Kc یا K1c به اندازه کافی بالا ، که بتواند از رشد ترک جلوگیری کند، انتخاب کرد. همچنین اگر حداکثر اندازه مجاز عیب موجود درقطعه و تافنس شکست ماده ، یعنی Kc یا K1c، معلوم باشد در آن صورت میتوان حداکثر تنش قابل تحمل برای قطعه رامشخص کرد. از این رو میتوان اندازه تقریبی قطعه را تیین کرد، آن چنان که از پایینتر آمدن حداکثر تنش ایجاد شده از حد مجاز، اطمینان حاصل شود.
همچنین اگر ماده معینی انتخاب و اندازه قطعه و تنش وارد برآن مشخص شده باشد ، حد اکثر اندازه مجاز عیب قابل تحمل را میتوان به طور تقریب بدست آورد.
توانایی هرماده در مقابل رشد ترک به عوامل زیر بستگی دارد:
1- عیوب بزرگ ، تنش مجاز را کاهش میدهد. فنون خاص تولید، مانند جداسازی و کاهش ناخالصیهااز فلز مذاب و فشردن ذرات پودر در حالت داغ در تولید اجزای سرامیکی همگی میتواند موجب کاهش اندازه عیب شود و تافنس شکست را بهبود ببخشد.
2- در فلزات انعطاف پذیر ، ماده مجاور راس ترک میتواند تغییر فرم یابد . به طوری که سبب باز شدن راحت راس ترک و کاسته شدن از حساسیت آن شده و ضزیب شدت تنش را کاهش داده و از رشد ترک جلوگیری میکند معمولا افزایش استحکام فلز انعطاف پذیری را کاهش میدهد و سبب کاهش تافنس شکست میشود ، مانند سرامیکهاوتعداد زیادی از پلیمرها ، تافنس شکست بسیار پایینتر از فلزات دارند.
3- مواد ضخیمتر وصلبتر دارای تافنس شکست کمتر از مواد نازک هستند.4- افزایش سرعت وارد کردن بار، مانند سرعت وارد شدن بار د ر آزمایش ضربه ، نوعاتافنس شکست جسم را کاهش میدهد.5- افزایش درجه حرارت معمولا تافنس شکست راافزایش میدهد، همان گونه که د ر آزمایش ضربه این چنین است .6- با کوچک شدن اندازه دانه ها معمولا تافنس شکست بهبود مییابد ، د ر حالی که با وجود عیوب نقطه ای و نابجاییهای بیشتر تافنس شکست کاهش مییابد. بنابراین مواد سرامیکی دانه ریز میتواند مقاومت به رشد ترک را بهبود بخشند.

بادامک چیست؟

حرکت*های متداول پیرو

اولین اقدام در طرح منحنی یک بادامک، رسم دیاگرام تغییر مکان است. لازم است تغییر مکان پیرو به*صورت تابعی از زاویه دوران بادامک تعیین گردد. این تابع ممکن است شکل خاصی داشته باشد یا امکان دارد غیرمشخص باشد. پروفیل یک بادامک معمولاً به*کمک منحنی جابجایی پیرو آن یک*سری پارامترهای مربوط به مکانیزم مورد نظر رسم می*شود. برای اینکه پیرو با حرکتی که از بادامک می*گیرد، کار مورد انتظار را انجام دهد از منحنی*های مختلفی برای دیاگرام جابجایی آن استفاده می*شود. چند نوع از حرکت*های متداول پیرو عبارتند از:

1. حرکت با شتاب ثابت

2. حرکت با سرعت ترمیم شده

3. حرکت نوسانی ساده(هارمونیک)

4. حرکت سیکلوئیدی



انواع دیگر حرکت*های پیرو عبارتند از:

حرکت بیضوی، منحنی*های چند جمله*ای از درجه پنج، حرکت درجه هشت و ...

پس از آنکه منحنی جابجایی پیرو مشخص گردید، می*بایست پروفیل بادامک مربوطه را که قرار است منحنی مزبور را تامین نماید، طراحی نمود.

انواع بادامک*ها :

بعضی از انواع متداول بادامک*ها عبارتند از:

1. بادامک*های دیسکی

2. بادامک*های انتقالی

3. بادامک*های استوانه*ای

بادامک*های دیسکی معمولاً با سرعت ثابت دوران می*کنند و مسائل فنی زیادی را می*توان با بادامک*های دیسکی حل و بحث کرد و از نظر ساخت ساده*ترین نوع بادامک*ها بوده و در عین حال موارد استفاده زیادی دارند.

بادامک*ها را می*توان به سه نوع مختلف دسته بندی نمود:

1. براساس شکل ظاهری آنها

2. براساس نمودار حرکت پیرو آنها

3. براساس نوع قیود موجود در پیروی آنها



بادامک*ها را از روی شکل ظاهریشان نیز می*توان دسته بندی کرد. شکل یک بادامک می*تواند به*صورت*های:

گوه*ای، استوانه*ای، مارپیچ، مخروطی، کروی، گوی سان، شعاعی، مزدوج، و یا سه بعدی باشد.

بادامک می*تواند دارای هر یک از حرکت*های دورانی و یا انتقالی باشد. بادامک*های گوه*ای شامل پیرو انتقالی و نوسانی می*باشند.

طراحی بادامک گوه*ای بسیار ساده است. پیرو چنین بادامک*هایی می*بایست به*طور دائم، با بادامک در تماس باشد، که این عمل را می*توان به-وسیله یک فنر پیش بار گذاری شده، یا ایجاد حرکت مثبت درون شیاری برای پیرو مهیا نمود.

در بادامک*های شعاعی یا دیسکی، پیرو دارای حرکت شعاعی از مرکز دوران بادامک است.

پیروها به*وسیله فنرهای پیش گذاری شده با بادامک*هایش در تماس می*باشند. بادامک های صفحه ای یا دیسکی بخاطر سادگی و حجم کم بسیار متداول می*باشند.

بادامک مزدوج دارای یک زوج بادامک دیسکی می*باشد که به*طور پیوسته با یک پیرو در تماس می*باشند. بادامک*های مزدوج زمانی مورد استفاده قرار می*گیرند که هدف داشتن:

1. سرعت*های بالا،

2. بارهای دینامیکی زیاد،

3. سر و صدای کم،

4. سایش کم،

5. و بالاخره قابلیت کنترل بالای پیرو باشد.

بادامک مارپیچ وار، گونه*ای از بادامک تخت با شیار مارپیچ می*باشد که قادر به کنترل حرکت نوسانی و یا انتقالی پیرو نظیرش می*باشد. کاربرد این نوع بادامک، بخاطر آن که بادامک می*بایست دورانی در خلاف جهت حرکتش *برای قرار دادن پیرو در موقعیت اولیه*اش داشته باشد، محدود می*باشد.

بادامک گوی*سان یا بشکه*ای حرکت پیرو توسط شیار محیطی بریده شده بر روی سطح بادامک ایجاد می*گردد.

به*طور کلی دو نوع بادامک گوی*سان (بشکه*ای) وجود دارد، که هر نوع توسط سطح بادامک مشخص می*شود. سطوح مورد نظر می*توانند محدب یا مقعر باشند. بادامک گوی*سان زمانی مورد استفاده قرار می*گیرد که زاویه نوسان پیرو زیاد باشد. بخاطر شیار موجود روی سطح بادامک، کاربرد این نوع بادامک*ها تنها محدود به سرعت*های ملایم می*باشند.

بادامک بشکه*ای، را اغلب بادامک استوانه*ای نیز می*نامند. این نوع بادامک دارای شیار محیطی بریده شده در روی استوانه می*باشد(بادامک حول محور استوانه دوران می*نماید). به*طور کلی دو نوع بادامک بشکه*ای داریم. نوع بادامک توسط نحوه*ای که حرکت به پیرو منتقل می*گردد، تعیین می*گردد.

بادامک استوانه*ای شیاری، این نوع بادامک قادر به پذیرفتن حرکت مثبت می*باشد.

پیرو این بادامک*ها دارای یک فنر پیش*بار گذاری شده است.

بادامک مخروطی: پیرو این نوع بادامک*ها، مختصری در امتداد خط مولد مخروط حرکت می*کند. بادامک*های مخروطی بخاطر داشتن هزینه زیاد ساخت، استعمال زیادی ندارد.

بادامک کروی، این بادامک از یک سطح کروی که حرکت را به پیرو نظیرش انتقال می*دهد تشکیل شده است. پیرو حول محوری که عمود بر دوران بادامک می*باشد، نوسان می*کند. بادامک*های کروی نیز همانند بادامک*های مخروطی بخاطر داشتن هزینه زیاد ساخت، کمتر مورد استفاده قرار می*گیرند.

فایده استفاده از بادامک کروی نسبت به بادامک دیسکی در این است که در بادامک*های کروی، امکان بدست آوردن حرکت نوسانی، حول محوری که با محور دوران بادامک موازی نباشد نیز وجود دارد.

طراحی صنعتی چیست؟

در زمانهای قدیم ، حتی در سالهای قبل از میلاد برای نشان دادن و معرفی کردن قطعات و وسایل صنعتی از نقشه هائی استفاده می کرده اند که بطور کامل گویا نبوده و از قواعدی که همگان آن را درک کنند بهره ای نداشته است و در موقع نقشه خوانی با مشکلاتی روبرو می شدند.

تا اینکه آقای لئونار داوینچی نقاش و مجسمه ساز ایتالیائی (۱۵۱۶ - ۱۴۵۹ ) طراحی را ارائه نمود و طبق قواعدی جسم سه بعدی را روی صفحه دو بعدی با رسم تصاویر نشان می داد که در این حال نقشه ها گویا تر و قابل فهم تر بود.

سپس دانشمندان و ریاضیدانان اروپایی فعالیت او را دنبال کردند تا اینکه گاسپار مانژ اهل فرانسه در سال ۱۷۹۸ هندسه ترسیمی را معرفی نمود و این علم پایه و ریشه طراحی سازه های صنعتی (نقشه کشی صنعتی) شد و امروزه از همان اصول استفاده می گردد.

با توجه به ضرورت نقشه کشی و نقشه خوانی مجموعه قواعد و اصولی را استاندارد بین المللی معرفی نموده تا با در نظر گرفتن آن یک نقشه در تمام جهان دارا ی یک معنی باشد یا به عبارت دیگر یک نقشه فقط یک قطعه یا یک جسم را در تمام جهان معرفی کند.

در حقیقت می توان اصول نقشه کشی را زبان بین المللی صنعت نامیدکه فراگیری آن برای دانشجویان رشته های فنی و مهندسی لازم و ضروری می باشد.

از جمله کتابهایی که می توان از آنها برای طراحی های سازه های صنعتی بهره گرفت کتاب مرجع گوگولف یا کتابهای نقشه کشی صنعتی مهندس محمود مرجانی که خود یکی از برترین نقشه کشهای ایران است که در نوشته های بعدی بیشتر از ایشان صحبت خواهم کرد در ادامه و سرفصل های بعدی از وسایل طراحی ـ لوازم نقشه کشی و همچنین سرفصل های نقشه کشی از جمله تصاویر دو بعدی و سه بعد یـ انواع اجسام ـ انواع پرسپکتیو ها و غیره صحبت خواهم کرد .

ک دستگاه یا وسیله ای که در مکانیزم ماشین بکار گرفته می شود از قطعات مختلفی تشکیل شده است که بی شک آن قطعات به نحوی با یکدیگر مرتبط هستند تا بتوانند کار مورد نظر را انجام دهند.

برای هر دستگاه یک نقشه تر کیبی به صورت تصویر معرفی میشود که سازنده وسیله مستقیما نمی تواند از روی آن کار ساخت را شروع نماید بنا بر این ضروری است ابتدا نقشه تفکیکی قطعات تهیه گردد تا پس از ساخت قطعات مختلف بر روی یکدیگر سوار شوند.

برای اینکه این قطعات به خوبی مونتاژ شوند و دستگاه بتواند کار خود را به خوبی انجام دهد لازم است جنس قطعه -نوع صافی سطوح -نوع انطباق قطعات در گیر با هم و مقدار تلرانس آنها روی نقشه مشخص گردد تا سازنده دقت لازم را در هنگام ساخت به کار گیرد.

از نوشته های ذکر شده میتوان به خوبی در یافت که ترسیم سازه های صنعتی(نقشه کشی صنعتی)چه نقش حیاتی در صنعت و پیش برد آن به سوی ترقی دارد.

اگر در اجتماع و در زمینه فرهنگی نقش مسوولان تربیتی مهم است اگر در نظم عمومی نقش پلیس و نیروی انتظامی حائز اهمیت است و اگر های دیگر در صنعت نیز نقش یک طراح (Drafter) بسیار اهمیت دارد.

طراح علاوه بر آشنایی کامل به حرفه خود باید به فنون مرتبط با مکانیک قطعات از جمله:

طراحی قالب و ریخته گری و متالوژی مواد و تراشکاری و .... آشنا باشد.

علاوه بر این باید به فن اندازه گیری دقیق و کار با وسایل مختلفی که دراین زمینه وجود دارد و طراحی جیگ و فیکسچر ها(Jig and Fixtures) آشنا باشد.

در مجموع او یک همه فن حریف در زمینه علم مکانیک باشد.

طراح با نگاه به یک نقشه باید به نوع قطعه-مورد استفاده و جنس آن پی ببرد او بایتا اینکه آقای لئونار داوینچی نقاش و مجسمه ساز ایتالیائی (۱۵۱۶ - ۱۴۵۹ ) طراحی را ارائه نمود و طبق قواعدی جسم سه بعدی را روی صفحه دو بعدی با رسم تصاویر نشان می داد که در این حال نقشه ها گویا تر و قابل فهم تر بود.

سپس دانشمندان و ریاضیدانان اروپایی فعالیت او را دنبال کردند تا اینکه گاسپار مانژ اهل فرانسه در سال ۱۷۹۸ هندسه ترسیمی را معرفی نمود و این علم پایه و ریشه طراحی سازه های صنعتی (نقشه کشی صنعتی) شد و امروزه از همان اصول استفاده می گردد.

با توجه به ضرورت نقشه کشی و نقشه خوانی مجموعه قواعد و اصولی را استاندارد بین المللی معرفی نموده تا با در نظر گرفتن آن یک نقشه در تمام جهان دارا ی یک معنی باشد یا به عبارت دیگر یک نقشه فقط یک قطعه یا یک جسم را در تمام جهان معرفی کند.

در حقیقت می توان اصول نقشه کشی را زبان بین المللی صنعت نامیدکه فراگیری آن برای دانشجویان رشته های فنی و مهندسی لازم و ضروری می باشد.

از جمله کتابهایی که می توان از آنها برای طراحی های سازه های صنعتی بهره گرفت کتاب مرجع گوگولف یا کتابهای نقشه کشی صنعتی مهندس محمود مرجانی که خود یکی از برترین نقشه کشهای ایران است که در نوشته های بعدی بیشتر از ایشان صحبت خواهم کرد در ادامه و سرفصل های بعدی از وسایل طراحی ـ لوازم نقشه کشی و همچنین سرفصل های نقشه کشی از جمله تصاویر دو بعدی و سه بعد یـ انواع اجسام ـ انواع پرسپکتیو ها و غیره صحبت خواهم کرد .

ک دستگاه یا وسیله ای که در مکانیزم ماشین بکار گرفته می شود از قطعات مختلفی تشکیل شده است که بی شک آن قطعات به نحوی با یکدیگر مرتبط هستند تا بتوانند کار مورد نظر را انجام دهند.

برای هر دستگاه یک نقشه تر کیبی به صورت تصویر معرفی میشود که سازنده وسیله مستقیما نمی تواند از روی آن کار ساخت را شروع نماید بنا بر این ضروری است ابتدا نقشه تفکیکی قطعات تهیه گردد تا پس از ساخت قطعات مختلف بر روی یکدیگر سوار شوند.

برای اینکه این قطعات به خوبی مونتاژ شوند و دستگاه بتواند کار خود را به خوبی انجام دهد لازم است جنس قطعه -نوع صافی سطوح -نوع انطباق قطعات در گیر با هم و مقدار تلرانس آنها روی نقشه مشخص گردد تا سازنده دقت لازم را در هنگام ساخت به کار گیرد.

از نوشته های ذکر شده میتوان به خوبی در یافت که ترسیم سازه های صنعتی(نقشه کشی صنعتی)چه نقش حیاتی در صنعت و پیش برد آن به سوی ترقی دارد.

اگر در اجتماع و در زمینه فرهنگی نقش مسوولان تربیتی مهم است اگر در نظم عمومی نقش پلیس و نیروی انتظامی حائز اهمیت است و اگر های دیگر در صنعت نیز نقش یک طراح (Drafter) بسیار اهمیت دارد.

طراح علاوه بر آشنایی کامل به حرفه خود باید به فنون مرتبط با مکانیک قطعات از جمله:

طراحی قالب و ریخته گری و متالوژی مواد و تراشکاری و .... آشنا باشد.

علاوه بر این باید به فن اندازه گیری دقیق و کار با وسایل مختلفی که دراین زمینه وجود دارد و طراحی جیگ و فیکسچر ها(Jig and Fixtures) آشنا باشد.

در مجموع او یک همه فن حریف در زمینه علم مکانیک باشد.

طراح با نگاه به یک نقشه باید به نوع قطعه-مورد استفاده و جنس آن پی ببرد او باید یک نقشه خوان تمام عیار باشد چون طراحان و نقشه کشان با نقشه خود با یکدیگر صحبت می کنند.

آنالیز مـودال

مطالعه دینامیک سازه ها برای ارزیابی هر محصول مهندسی ضروری است. در بورد مدار چاپی یا پل معلق، رایانه یا لانچر ماهواره و ... پاسخ دینامیکی نقش اساسی را در کارکرد قابل قبول ایفا می‌کند. گفتنی است طراحی سازه های پیچیده مکانیکی، هوایی و سازه‌ای به گونه ایست که علاوه بر مقاومت بالا، بایستی دارای وزن کم و قابلیت انعطاف زیاد باشند، چراکه وجود اثرات اینرسیال پیش بینی نشده در سازه های فضایی، مانند آنتن های ماهواره‌ای، باعث ناپایداری دینامیکی سازه در حین عملکرد آنها خواهد شد لذا با اعمال آنالیز مودال به صورت تئوری و تجربی در مورد سامانه مورد نظر وکاهش وزنی در حدود چند گرم از آن اثراتی بسیار چشمگیر و حائز اهمیت بر روی عملکرد کل سامانه خواهد داشت. این نیازهای جدی در طراحی سازه های جدید، پتانسیل بروز ارتعاشات ناخواسته را در این سازه ها افزایش می دهد


مکانیزم گیربکس AL4

این گیربکس با مشارکت شرکت رنو طراحی شده است. گیربکس عرضی AL4 دارای چهار دنده جلو می باشد و برای جای گزینی گیربکس 4hp20 در نظر گرفته شده است. تعویض دنده و قفل شدن مبدل گشتاور به صورت الکترو هیدرولیک توسط کنترل الکترونیکی انجام می گیرد. در این گیربکس دو برنامه ویژه نیز عرضه شده است : وضعیت اسپورت و وضعیت زمستانی. در شرایط خاص ، بوسیله یک کلید ، خودرو در دنده یک قرار می گیرد.
ساختمان گیربکس AL4 شامل پنج قسمت اصلی می باشد:
١- مبدل گشتاور.
٢- پمپ روغن.
٣- مکانیزمی که بوسیله واحد هیدرولیک فعال می شود.
٤- دیفرانسیل معمولی.
٥- چرخ دنده کاهنده که رابط گیربکس و دیفرانسیل است.
مبدل گشتاور جای کلاچ را گرفته است و وظیفه آن افزایش تدریجی گشتاور در آغاز حرکت است. و از طریق ارتباط هیدرولیک ، حرکت موتور را به گیربکس منتقل می کند. عملکرد آن بر اساس هیدرودینامیک مایعات می باشد. مبدل گشتاور با روغن تحت فشار پر شده و شامل قسمت های زیر می باشد :
١- پمپ ، که بوسیله موتور به حرکت در می آید.
٢- توربین ، که در مقابل پمپ قرار گرفته است.
٣- استاتور ، که آزادانه می گردد.
هنگام آغاز حرکت ، پمپ باعث ایجاد حرکت دورانی در روغن می شود و روغن تحت اثر نیروی گریز از مرکز ، وارد شیارهای توربین شده که هنوز ساکن است. در این حالت ، جریان روغن بر خلاف جهت حرکت پمپ است. استاتور که آزادانه می گردد ، جریان روغن را هدایت می کند. در آغاز حرکت ، پمپ روغن را به سمت شیارهای توربین می فرستد. استاتور ثابت مانده و جریان روغن را در جهت چرخش پمپ قرار می دهد. این مرحله ، مرحله تبدیل نامیده می شود. توربین شتاب گرفته و جهت چرخش روغن عوض می شود. وقتی سرعت توربین به سرعت پمپ برسد ، استاتور شروع به چرخش می کند تا مانع جریان روغن نشود. این مرحله ، مرحله کوپلینگ نامیده می شود. با این حال هنوز بین پمپ و توربین کمی لغزندگی وجود دارد. برای جلوگیری از لغزش ، یک پانچ به کار می رود که از خارج کنترل می گردد و باعث می شود این دو قطعه با هم حرکت کنند. این مرحله ، مرحله قفل شدن (Lock up) نامیده می شود.
پمپ روغن در پشت مبدل گشتاور قرار گرفته و مدار هیدرولیک را تغذیه می کند. این پمپ چرخشی حرکت خود را از طریق پروانه مبدل گشتاور ، از موتور دریافت می کند. روغن از یک ***** می گذرد و بوسیله یک تعویض کننده گرمای آب روغن ، خنک می شود. ECU جریان روغن را در تعویض کننده گرما بوسیله یک شیر الکتریکی کنترل می کند. کنترل جریان روغن در این مرحله به دمای آن بستگی دارد. مدار به یک شیر ترمو استاتیک مجهز شده است که در هوای سرد ، جریان اضافی روغن را از مدار خارج می کند.
قلب گیربکس AL4 ، مکانیزم آن است. این مکانیزم شامل دو زنجیرهء چرخ دنده است. که به شکل سیاره ای حرکت می کنند و با هم در گیر هستند. دو عدد کلاچ برای انتخاب یک یا چند عضو از زنجیره به کار می روند. کلاچ ها از نوع چند صفحه ای هستند که توسط یک پیستون هیدرولیک و فنر برگشت ، کار می کنند. سه عدد ترمز برای متوقف کردن اعضای مختلف زنجیره به کار می روند. یکی از ترمزها از نوع چند صفحه ای است که دیسک های خارجی آن در پوسته گیربکس تعبیه شده اند. دو ترمز دیگر از نوع نواری می باشند. این ترمز ها دارای یک پین ثابت در یک سمت و یک پین متحرک در سمت دیگر می باشند که به یک پیستون متصل می شود. و این پیستون توسط واحد هیدرولیک به حرکت در می آید. از آنجا که روش تکنیکی به کار رفته در این سیستم باعث کاهش چشمگیر گشتاور مخالف می شود ، مصرف سوخت خودرو نیز کاهش می یابد.
واحد هیدرولیک ، توزیع روغن در ترمزها و کلاچ های مختلف را کنترل می کند. واحد هیدرولیک اصلی دارای تعدادی شیر کشویی است که برای باز و بسته کردن مسیرهای عبور روغن به کار می روند. شیرهای کشویی را می توان به طرق مختلف فعال نمود.
١- به صورت دستی توسط اهرم انتخاب دنده .
٢- به صورت هیدرولیک به منظور کنترل سیستم
٣- به صورت الکتروهیدرولیک .
واحد هیدرولیک دارای هشت شیر کشویی می باشد که بوسیله ECU کنترل می شوند. واحد هیدرولیک فرعی نیز دارای سه شیر کشویی می باشد که برای قفل کردن مبدل گشتاور به کار می روند خروجی این مکانیزم از طریق چرخ دنده کاهنده منتقل می شود. این بخش شامل دو چرخ دنده است که رابط میان گیربکس و دیفرانسیل هستند. دنده پارک که بر روی شفت نصب شده است ، با قفل کردن سیستم انتقال قدرت ، به صورت مکانیکی از حرکت خودرو جلوگیری می کند. این عمل توسط قطعه ای انجام می شود که مستقیما ً به اهرم انتخاب دنده متصل شده است.
عملکرد :
تعویض دنده توسط یک واحد الکترونیکی انجام می شود. به منظور کنترل
شیرها و رگلاتورهای واحد هیدرولیک ، کامپیوتر از سنسورهای مختلف پیام هایی دریافت می کند:
١- پتانسیومتر دریچه گاز ( برای وضعیت شتاب گیری ).
٢- سنسور دور موتور.
٣- سنسور سرعت توربین که در واقع سرعت ورودی به گیربکس را نشان می دهد.
٤- سنسور سرعت خودرو که در مقابل دنده پارک نصب شده است.
٥- سنسور دمای روغن.
٦- کنتاکتور چند منظوره که وضعیت اهرم انتخاب دنده را نشان می دهد.

٧- کلید ترمز ( زمان استفاده از ترمز ها را به کامپیوتر اطلاع می دهد ).
دو پیام اصلی برای تعویض دنده به کار می رود : وضعیت دریچه گاز و سرعت خودرو. کامپیوتر یک شیر الکتریکی را به کار می اندازد که فشاری بین ٠ تا ٣ بار ایجاد می نماید. این شیر ، یک رگلاتور را کنترل نموده که فشاری بین ٣ تا ٢١ بار تولید می کند و اصطلاحاً فشار خط گفته می شود. این فشار به طور مرتب توسط یک سنسور کنترل می شود. از طریق شیرهای کشویی که توسط شیرهای الکتریکی فعال می شوند ، این فشار به ترمزها و کلاچ ها منتقل می شود.برای تعویض دنده نرم و یکنواخت در حین رانندگی ، از یک دمپر استفاده شده تا از افزایش تدریجی فشار ، اطمینان حاصل شود.
عملکرد قفل مبدل گشتاور نیز توسط کامپیوتر منترل می شود. کامپیوتر یک شیر را که فشار بین ٠ تا ٣ بار دارد ، فعال می کند. قفل شدن مبدل گشتاور بوسیله دو شیر در واحد هیدرولیک فرعی کنترل می شود. علاوه بر این در زمان شروع حرکت خودرو ، یک رگلاتور ، فشار را در کلاچ مربوط به دنده یک کنترل می کند. این عمل باعث می شود آغاز حرکت خودرو به نرمی انجام شود.
در این گیربکس سه وضعیت رانندگی عرضه شده است:
١- وضعیت عادی که به طور خودکار با روشن شدن موتور انتخاب می شود. در این وضعیت ، کامپیوتر به ٩ حالت تعویض دنده خودکار دسترسی دارد. از کم مصرف ترین تا پر سرعت ترین. سیستم الکترونیکی مناسب ترین حالت را با توجه به شرایط جاده و نحوه رانندگی ، انتخاب می کند.
وضعیت رانندگی را می توان با استفاده از سه کلید انتخاب نمود ؛ که روی کنترل مرکزی قرار دارد.
٢- وضعیت اسپورت ، پر سرعت ترین حالت را اعمال می کند و بدون توجه به مصرف بالای سوخت ، از کارکرد موتور به بهترین نحو استفاده می کند.
٣- وضعیت زمستانی ، که در هنگام لغزنده بودن سطح جاده استفاده می شود ، باعث کاهش گشتاور در چرخ های متحرک می گردد.
اگر اهرم تعویض دنده را در حالت D قرار دهیم ، خودرو در دنده دو حرکت می کند. استفاده از دنده یک با قرار دادن اهرم در وضعیت دو میسر می شود.
روغن گیربکس AL4 دائمی است. تنها در هر ٦٠٠٠٠ کیلومتر باید مقدار آن را بازدید نمود. روغن توصیه شده ، همان روغن گیربکس 4hp20 است. بازدید سطح روغن از طریق پیچ میانی دریچه تخلیه صورت می گیرد. دریچه افزایش روغن در نزدیکی کابل انتخاب دنده قرار گرفته است.


آنالیز خستگی

مقدمه:

گاهی اوقات در اثر اعمال بار تناوبی (مثلاً یک بار کشش فشار) بر روی سازه، با اینکه تنش ماکزیمم ایجاد شده بر روی سازه کمتر از تنش نهایی آن است ، اما پس از اعمال تعدادی سیکل ، بر روی سازه ترک هایی ایجاد شده که در نهایت منجر به شکست می شود. این پدیده را خستگی در اثر اعمال بار تناوبی می نامند.
در مبحث خستگی با دیاگرام دامنه تنش بر حسب تعداد سیکل (دیاگرام S-N) آشنا شده اید. مثلاً می دانید که در حالت High Cycle Fatigue ماده غالباً در ناحیه الاستیک قرار دارد. اما در حالت Low Cycle Fatigue ماده وارد محدوده پلاستیک شده است.


در نرم افزار ANSYS برای انجام یک تحلیل خستگی تحت بار متناوب ابتدا باید تنش های ایجاد شده در سازه را تحت بارهای تناوبی تعیین کرد. بنابراین قبل از انجام هر آنالیز خستگی باید یک آنالیز استاتیکی که شامل حداقل دو بارگذاری (Load Step) میباشد را انجام دهید سپس با توجه به کانتورهای تنش (در هر بار اعمال شده) ، گره های بحرانی را ، تشخیص داده و سپس به محاسبه خستگی بر روی این گره های بحرانی بپردازید. برای انجام تحلیل خستگی پس از انجام تحلیل استاتیکی با مفاهیم زیر باید آشنا بود.


EVENT: تعداد سیکلهایی است که بر روی سازه اتفاق می افتد.

LOADING: بارهای اعمالی در آنالیز است که جزئی از EVENT میباشد.


Location: گره های بحرانی سازه است که محاسبات خستگی بر روی آنها انجام میشود و این گره ها توسط کاربر پس از محاسبه تنش و کرنش در هر بار گذاری بر روی مدل باید شناسایی شود.

دیاگرام S-N : نمودار دامنه تنش بر حسب تعداد سیکل خستگی است که در صفحه قبل توضیح داده شد و همچنین برای فلزات مختلف از کدهای ASME قابل دستیابی است.

دیاگرام Sn-T : در مواردی که سازه وارد ناحیه پلاستیک میشود تعریف این دیاگرام و پارامترهای الاستو – پلاستیک ضروری است.

نرم افزار ANSYS بر اساس کد ASME Boiler & Pressure Vessel (Section III) محاسبات خستگی را انجام می دهد و حال آنکه به کاربر توصیه کرده است در صورت تمایل به استفاده از روشهای دیگر ، محاسبه عمر خستگی را بر اساس معیار مورد نظر انجام دهد. در این راستا زبان پارامتری نرم افزار و نوشتن برنامه مناسب می تواند این نیاز کاربر را به سادگی بر آورده سازد.

محاسبه خستگی بر اساس روش ANSYS به صورت زیر انجام می شود.

1.مدلسازی و حل مساله با توجه به بارگذاری موجود در حل خستگی

2.فراخوانی مدل در POST1

3.تعیین تعداد نقاط ، Eventو Loading برای نرم افزار

4.تعیین خواص خستگی ماده موجود.

5.تعیین فاکتور تمرکز تنش در صورتی که کاربر نسبت به حل اجزاء محدود و نتایج آن به علت عدم امکان ایجاد شبکه بندی مناسب اطمینان کافی ندارد.

6.بازیابی تنش های مربوط به نقاط تعیین شده.

7.محاسبه خستگی بر اساس روش نرم افزار و مشاهده عمر به دست آمده.

نکته 1: به طور پیش فرض ارزیابی خستگی در نرم افزار بر اساس تعداد نقاط 5 ، تعداد Event برابر 10 و تعداد Loading در هر Event برابر 3 می باشد. کاربر می تواند در صورت نیاز مقادیر فوق را تغییر دهد.

نکته 2: دیاگرام Sn-T ، منحنی مقادیر شدت تنش بر حسب دما می باشد. این منحنی در مواردیکه کاربر بخواهد نرم افزار بررسی کند که آیا تنش های نامی در محدوده پلاستیک می باشند یا خیر ، بایستی تعیین شود. پارامترهای مادی الاستیک – پلاستیک نیز (Strain Hardening Exponent) M , N در صورت نیاز به انجام محاسبات ساده کد برای محدوده پلاستیک نیز بایستی تعیین شوند. این پارامترها از کد ASME برای مواد در دسترس می باشد.

نکته 3: سازه ها عموماً تحت تنش های ماکزیمم و مینیمم متعدد قرار دارند که معمولاً توزیع تنشی تصادفی داشته و کاربر از نحوه توزیع آنها اطلاع صحیح ندارد. در این راستا کاربر بایستی در تعیین تعداد تکرار تمامی محدوده های تنش دقت کند. نرم افزار ANSYS در محاسبه محدوده تنش ها و تعداد رخدادهای هر کدام از روش Rain Flow استفاده می کند. این روش به همراه امکان ایجاد خطای محاسباتی در آن و روش جلوگیری از ایجاد خطا در آن در فرم مثال زیر توضیح داده شده است

تست خستگی بوژی:

این تست برای مشخص نمودن عمر وسیله نقلیه بایستی انجام شود. از دیگر خروجی های این آنالیز می توان به محدوده ضریب ایمنی و یا یافتن نقاط بحرانی که در آنالیز های استاتیکی پیشین قابل استخراج نمی باشند اشاره نمود. بنابراین این آنالیز بایستی بعد از آنالیز های استاتیکی انجام شود.در صورت وجود ادوات با دقت مناسب پیشنهاد می گردد این تست بر روی بوژی انجام شود.

آنالیز خستگی در Ansys :

دراین آنالیز نیز مانند سایر آنالیز ها بایستی قید ها، به صورت قید های ساده اعمال شوند. علاوه بر این طبق معادلات اشاره شده در فصل تست بوژی بایستی یک نیروی سیکلیک نیز بر روی این وسیله اعمال شود. نتایج این آنالیز به صورت زیر ارائه می شود.

طرز کار قالب کشش



 
This image has been resized. Click this bar to view the full image. The original image is sized 754x455 and weights 28KB.
 





کاربرد شبیه سازی رایانه ای در طراحی قالب های کشش عمیق(PDF).(EN)
برای داتلود اینجا کلیک کنید.

مکانیزم دیفرانسیل

اگر اتومبیل همیشه بر روی خط راست حرکت می کرد و احتیاجی به پیچیدن نبود لزومی نداشت از دیفرانسیل استفاده کنیم و انتقال نیرو می توانست به شکل های مختلف انجام گیرد .
در سر پیچ ها و جاده های ناهموار (یا وقتی که چرخ ها در گِل یا برف گیر می کند ) چرخ های سمت چپ و سمت راست اتومبیل مسافت های متفاوتی را طی می کند . اگر این چنین نبود یعنی چرخ ها دوران مساوی داشتند یکی از چرخ ها ( چرخی که مسافت کمتری را طی می کند ) در روی جاده سر می خورد تا هماهنگی لازم در چرخ ها ایجاد شود که در این حالت خطرات و خسارت های زیاد به اتومبیل وارد می شد مانند سائیدگی لاستیک ها افزایش می یابد و در سرعت های زیاد خطر انحراف اتومبیل زیاد است . برای رهایی از دست چنین مشکلاتی نیاز به مکانیزم است که بتواند دوران چرخ ها متناسب با مسیری را که طی می کند تنظیم کند این مکانیزم دیفرانسیل خواهد بود .
قسمت های یک دیفرانسیل ساده :دنده پنیون ،دنده کرانویل ، هوزینگ ، دنده های هرز گرد ، دنده های پولوس


وظایف دیفرانسیل :
1- تقلیل سرعت 2- تغییر جهت نیرو ( جزء در خودرو های که موتور شان به صورت عرضی قرار دارد ) 3- تقسیم نیرو بر چرخ ها 4- تنظیم دور در سر پیچ ها ( دور زدن در سر پیچ ها )
1- تقلیل سرعت : برای ازدیاد کشش اتومبیل ، دیفرانسیل بایستی گشتاور زیادی را به چرخ ها انتقال نماید مثلاً دور موتور های بنزینی در حدود 6000 RPM و دور موتور های مسابقه در حدود 750RPM چنین دور قبل از انتقال به چرخ ها باید به اندازه ای لازم تقلیل یابد . تقلیل موجود در دیفرانسیل به وسیله پینیون و کرانویل صورت می گیرد ، چنانچه اگر تعداد دنده های پنیون و کرانویل را مساوی انتخاب کنیم هیچ تغییر کوپلی در این قسمت نخواهیم داشت . ولی شرایط ایجاد می کند توان منتقله به چرخ ها دارای سرعت کم و نیروی زیاد باشد به نسبتی که بخواهیم سرعت در دیفرانسیل کم شود بایستی تعداد دندانه های کرانویل نسبت به پنیون را بزرگتر انتخاب نماییم برا ی مثال : دیفرانسیل فولکس واگن 1200 را در نظر می گیریم که تعداد دندانه های چرخ دنده های پنیون و کرانویل به ترتیب 8 و 35 می باشد .

2- تغییر جهت نیرو :
تغییر اساسی که دیفرانسیل در خط نیرو انجام می دهد تغییر و تبدیل نیرو است که به وسیله پنیون و کرانویل ( مکانیزم انتقال و تبدیل نیرو صورت می گیرد ) چون خط محرک و محور خروجی گیربکس در امتداد طول اتومبیل قرار گرفته اند و محور های محرک چرخ های عقب ( میل پولوس ها ) در امتداد عرضی اتومبیل واقع شده اند لازم است از مکانیزم استفاده شود که نیرو را تحت زاویه 90 درجه بر چرخ های محرک اتومبیل منتقل نماید که این بوسیله درگیری پنیون و کرانویل صورت می گیرد .




3- تقسیم نیرو بر چرخ ها :
زمانیکه اتومبیل در خط مستقیم و در جاده مسطح حرکت می کند هر دو چرخ محرک دوران مساوی داشته و در این شرایط نیروی از پنیون به کرانویل منتقل می شود از طریق بدنه دیفرانسیل به دنده های هرز گرد و از آنجا به دنده های سر پولوس و در نتیجه به چرخ ها میرسد ( در این حالت برای سادگی مطلب می توان فرض کرد که دنده های هرز گرد به دنده های سر پولوس جوش خورده اند بنابراین دور چرخ ها مساوی بوده و هر کدام دورانی به اندازه کرانویل خواهند داشت


4- تنظیم دور ( دور زدن در سر پیچ ها ) : حرکت اتومبیل در سر پیچ ها باعث دوران دنده های هرز گرد نسبت به محور شان می شود و در نتیجه سرعت دورانی پولوس ها مساوی نخواهند بود . مثلاً هنگام گردش چرخ داخلی پیچ تحت قوه ثقل و سنگینی اتومبیل و فشاری که در اثر این عوامل به آن وارد می شود می خواهد کمتر حرکت کند ولی چرخ خارجی که آزادی بیشتری دارد شروع به حرکتی بیش از چرخ داخلی می کند موقعی که فشار به چرخ داخل وارد شد چون ارتباط هوزینگ به وسیله هرز گرد با دنده های پولوس مربوط شده اند دنده هرز گرد که سعی می کند با نیروی وارده چرخ سمت داخل را بچرخاند موفق نشده و در نتیجه شروع به چرخش به دور خود می کند بدون این که نیرو را به چرخ داخل پیچ منتقل نماید و به همین نسبت سرعت چرخ داخل پیچ کمتر از چرخ خارج پیچ می شود این عمل تا زمانی ادامه دارد که عکس العمل قوه ثقل روی چرخ داخل پیچ فشار می آورد و به مجرد این که اتومبیل در مسیر مستقیم قرار گرفت نیروی ثقل از چرخ داخل برداشته شد ، هرز گرد متوقف می شود و دوباره پولوس تابع چرخش کرانویل خواهد شد.


انواع دیفرانسیل در خودرو ها:
1- دیفرانسیل ساده 2- دیفرانسیل چهار چرخ محرک 3- دیفرانسیل کمک دار 4- دیفرانسیل بدون لغزش
1- دیفرانسیل ساده :
اغلب خودرو ها مجهز به دیفرانسیل از نوع ساده هستند . در بعضی از خودرو ها دیفرانسیل در روی محور محرک جلو و در بیشتر موارد روی محور محرک عقب قرار دارد .

2- سیستم چهار چرخ محرک :
اغلب خودرو های سبک دارای دو چرخ محرک هستند ، ممکن است دو چرخ عقب محرک باشد و یا دو چرخ جلو محرک باشد . وقتی جاده پوشیده از برف ، یخ و گل است ، سطح جاده لغزنده می شود در این وضعیت چرخ های متحرک اصطکاک لازم ( چسبندگی ) با سطح جاده را ایجاد نکرده و یکی از دو چرخ متحرک و یا هر دو آنها لغزش می کنند لغزش چرخ های متحرک روی چرخ های محرک و دیفرانسیل نیز تاثیر گذارده و در محفظه هرزگرد ها نیز تغییر دور به وجود می آید .
هر گاه همه چرخهای خودرو محرک باشند ، چرخ ها چسبندگی بهتری با سطح جاده به وجود آورده و عمل کنترل خودرو و شرایط رانندگی در جاده ساده تر خواهد بود . دلیل اینکار توزیع بار خودرو روی چهار چرخ و استفاده از آن در نیروی کشش همه چرخ هاست.
خودرو های چهار چرخ محرک هم روی سواریها( لندروور، رنجرور ،لندکروز و غیره) وهم در روی خودرو های نظامی ( جیب و....) و در بعضی ماشین های باری( بنز 911 ، ایفا ،..) کاربرد دارد.
معمولاً از محرکه چهار چرخ در شرایط اضطراری و لغزنده بودن جاده استفاده می شود و برای رانندگی طولانی نباید از این حالت استفاده نمود . در حال استفاده از محرک چهار چرخ باید جعبه دنده در دنده سنگین باشد برای درگیر نمودن چرخ های آزاد جلو یا سیستم انتقال قدرت ،اهرم تعویض دنده دیگری وجود دارد که در صورت لزوم میل گاردان جلو را با جعبه دنده کم کم در گیر می نماید .
3- دیفرانسیل کمک دار
دیفرانسیل کمک دار در سیستم انتقال قدرت خودرو های سنگین حمل و نقل و راهسازی و غیره کاربرد دارند . دیفرانسیل های کمک دار به صورت دوبل ،تریبل و خورشیدی وجود دارد .
در دیفرانسیل دوبل دو پنیون و دو کرانویل وجود داشته و تقلیل دور در دو مرحله انجام می شود . این دو به طور ثابت و بدون تغییر است . در دیفرانسیل دوبل تقلیل دور یکبار به صورت کم و بار دیگر به صورت زیاد تر انتقال می یابد . در نوع تریبل ( سه گانه ) دیفرانسیل مجهز به سیستم تعویض دنده است و در موقعی که نیروی کششی کافی نباشد ، راننده با فشردن دکمه ای ، بطور الکتریکی یا بوستری ، ماهکی را حرکت داده و حالت دوم و سوم در آن ایجاد می شود .
دیفرانسیل های خورشیدی هم مانند دوبل عمل می کنند ، با این تفاوت که مرحله دوم آن به طور اختیاری، وسیله راننده به وجود می آید .
در این نوع دیفرانسیل یک مجموعه خورشیدی وجود دارد که دنده کرانویل به دنده رینگی پیچ شده و قفسه ؛محفظه دنده هرزگرد ها متصل می شود . در صورت به کار انداختن سیستم خورشیدی ، دنده خورشیدی ثابت شده و در کرانویل از دنده رینگی به قفسه و از آن به پولوس ها منتقل می شود .
وقتی دیفرانسیل در حال تقلیل دور یا افزایش گشتاور است ، دنده خورشیدی ثابت ،دنده رینگی محرک و قفسه متحرک بوده و با نسبت ID=ZC/ZR=ZR+ZS/ZR گشتاور خروجی افزایش و دور خروجی کاهش می یابد .

جهت نیرو در دیفرانسیل خورشیدی
با ثابت شدن دنده خورشیدی جهت نیرو به شرح زیر است :
پینیون ← کرانویل ← رینگی ← قفسه ← محفظه هرزگرد ها ← محور هرزگرد ← دنده هرزگرد ها ← دنده سر پولوس ← پولوس
ID=ZK/ZP×ZC/ZP=ZK/ZP×ZS+ZR/ZR
دنده خورشیدی با نیروی پوستر حرکت به راست نموده و با نگهدارنده ثابت در گیر شده و می شود .
4- دیفرانسیل های بدون لغزش
یکی از معایب دیفرانسیل های معمولی آن است که وقتی یکی از چرخ ها در جاده ای لغزنده و کم اصطکاک قرار بگیرد ،این چرخ با سرعت زیاد چرخش نموده و همه نیروی میل گاردان از طریق همین چرخ مصرف شده و چرخ دیگر هیچگونه نیروئی را انتقال نمی دهد .
خاصیت دیفرانسیل آن است که گشتاور یکسانی را به هر دو محور محرک انتقال دهد . حال اگر یکی از چرخ ها در سطح لغزنده ای سریعاً بچرخد ، چرخ دیگر هیچ گونه نیروی را انتقال نخواهد داد .
در این گونه موارد معمولاً خودرو ، بی حرکت مانده و برای انتقال قدرت ، باید حرکت چرخی که سریع می گرد به نحوی کندتر شود تا نیرو به چرخ دیگر نیز منتقل شود .
ایجاد اصطکاک زیاد تر بین چرخ لغزان و زمین لغزنده عمل نسبتاً دشواری است ، و لذا در خودرو ها پر قدرت و پیشرفته از دیفرانسیل های بدون لغزش استفاده می کنند .
دیفرانسیل های بدون لغزش به دو صورت قفل شونده خودکار و یا نوع اصطکاکی ساخته می شود در نوع کلاج مخروطی بین چرخ دنده سر پولوس و محفظه دیفرانسیل قار می گیرد ، بین کلاج مخروطی و دنده ها ، فنر های قرار دارد که سطوح مخروطی را به هم می فشارد . به این ترتیب نیروی اصطکاکی بین دنده سر پولوس و محفظه دیفرانسیل بوجود می آید ، این نیرو با هر گونه اختلاف دورانی که بین پولوس ها به وجود آید مقابله می کند . البته این نیرو آنقدر زیاد می باشد که در سر پیچ ها مانع تقلیل دو چرخ داخل پیچ و یا افزایش دور چرخ خارج قوس گردد . در روی سطوح اصطکاکی و مارپیچ دنده درشتی برای عبور روغن می باشد در نوع دیگر از صفحه کلاج استفاده شده است . در این طرح صفحات دیسک در روی شیار های بدنه دیفرانسیل و صفحه کلاج ها در روی شیار های قطعه ای که متصل به پولوس هست قرار دارند .
آخرین صفحه دیسکی که بین دنده و صفحات قرار دارد ، صفحه فنری است ( فنر موج دار ) که در موقع سوار کردن مجموع صفحات ، با پیش فشار معینی جمع شده و نیروی محوری به صفحات وارد می کند . با این طرح صفحه کلاج ها بین رینگ های جانبی ( که به طور هزار خاری با پولوس درگیر هستند ) و بدنه دیفرانسیل به حالت فشرده قرارگرفته و پولوس ها با بدنه دیفرانسیل عملاً یک پارچه می شود در این طرح هم ، نیروی فنر طوری محاسبه شده که در پیچ ها مزاحمتی برای کاستن از دور داخل پیچ ، و یا افزایش دور چرخ خارج پیچ فراهم نمی شود . ممکن است از فنر لوله ای هم در نوع کلاج دار استفاده شود

طرز کار پمپ روغن چرخ دنده ای

پمپ روغن چرخ دنده ای
پمپ روغن روتوری